
Evolutionary
Machine Learning
Techniques

Seyedali Mirjalili
Hossam Faris
Ibrahim Aljarah Editors

Algorithms and Applications

Algorithms for Intelligent Systems
Series Editors: Jagdish Chand Bansal · Kusum Deep · Atulya K. Nagar

Algorithms for Intelligent Systems

Series Editors

Jagdish Chand Bansal, Department of Mathematics, South Asian University,
New Delhi, Delhi, India
Kusum Deep, Department of Mathematics, Indian Institute of Technology Roorkee,
Roorkee, Uttarakhand, India
Atulya K. Nagar, Department of Mathematics and Computer Science, Liverpool
Hope University, Liverpool, UK

This book series publishes research on the analysis and development of algorithms
for intelligent systems with their applications to various real world problems. It
covers research related to autonomous agents, multi-agent systems, behavioral
modeling, reinforcement learning, game theory, mechanism design, machine
learning, meta-heuristic search, optimization, planning and scheduling, artificial
neural networks, evolutionary computation, swarm intelligence and other algo-
rithms for intelligent systems.
The book series includes recent advancements, modification and applications

of the artificial neural networks, evolutionary computation, swarm intelligence,
artificial immune systems, fuzzy system, autonomous and multi agent systems,
machine learning and other intelligent systems related areas. The material will be
beneficial for the graduate students, post-graduate students as well as the
researchers who want a broader view of advances in algorithms for intelligent
systems. The contents will also be useful to the researchers from other fields who
have no knowledge of the power of intelligent systems, e.g. the researchers in the
field of bioinformatics, biochemists, mechanical and chemical engineers,
economists, musicians and medical practitioners.

The series publishes monographs, edited volumes, advanced textbooks and
selected proceedings.

More information about this series at http://www.springer.com/series/16171

http://www.springer.com/series/16171

Seyedali Mirjalili • Hossam Faris •

Ibrahim Aljarah
Editors

Evolutionary Machine
Learning Techniques
Algorithms and Applications

123

Editors
Seyedali Mirjalili
Torrens University Australia
Brisbane, QLD, Australia

Griffith University
Brisbane, QLD, Australia

Hossam Faris
King Abdullah II School for Information
Technology
The University of Jordan
Amman, Jordan

Ibrahim Aljarah
King Abdullah II School for Information
Technology
The University of Jordan
Amman, Jordan

ISSN 2524-7565 ISSN 2524-7573 (electronic)
Algorithms for Intelligent Systems
ISBN 978-981-32-9989-4 ISBN 978-981-32-9990-0 (eBook)
https://doi.org/10.1007/978-981-32-9990-0

© Springer Nature Singapore Pte Ltd. 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-32-9990-0

Preface

This book provides an in-depth analysis of the current evolutionary machine
learning techniques. Discussing the most highly regarded methods for classifica-
tion, clustering, regression, and prediction, it includes techniques such as support
vector machines, feature selection, artificial neural networks including feed-forward
neural networks, and multi-layer perceptron.

The book includes essential definitions, literature reviews, and the training
algorithms for machine learning using classical and modern optimization tech-
niques. It also investigates the pros and cons of classical training algorithms. It
features a range of proven and recent nature-inspired optimization algorithms used
to train different types of artificial neural networks, including genetic algorithm,
particle swarm optimization, grey wolf optimizer, whale optimization algorithm, ant
lion optimizer, salp swarm algorithm, moth flame optimization, since cosine
algorithm, dragonfly algorithm, grasshopper optimizer, multiverse optimizer, and
Harris hawks optimizer.

Brisbane, Australia Prof. Seyedali Mirjalili
Amman, Jordan Prof. Hossam Faris
Amman, Jordan Prof. Ibrahim Aljarah
July 2019

v

Contents

Introduction to Evolutionary Machine Learning Techniques 1
Seyedali Mirjalili, Hossam Faris and Ibrahim Aljarah

Classification and Predication

Salp Chain-Based Optimization of Support Vector Machines and
Feature Weighting for Medical Diagnostic Information Systems 11
Ala’ M. Al-Zoubi, Ali Asghar Heidari, Maria Habib, Hossam Faris,
Ibrahim Aljarah and Mohammad A. Hassonah

Support Vector Machine: Applications and Improvements
Using Evolutionary Algorithms . 35
Seyed Hamed Hashemi Mehne and Seyedali Mirjalili

Efficient Moth-Flame-Based Neuroevolution Models 51
Ali Asghar Heidari, Yingyu Yin, Majdi Mafarja,
Seyed Mohammad Jafar Jalali, Jin Song Dong and Seyedali Mirjalili

Autonomous Robot Navigation Using Moth-Flame-Based
Neuroevolution . 67
Seyed Mohammad Jafar Jalali, Rachid Hedjam, Abbas Khosravi,
Ali Asghar Heidari, Seyedali Mirjalili and Saeid Nahavandi

Link Prediction Using Evolutionary Neural Network Models 85
Rawan I. Yaghi, Hossam Faris, Ibrahim Aljarah, Ala’ M. Al-Zoubi,
Ali Asghar Heidari and Seyedali Mirjalili

Evolving Genetic Programming Models for Predicting Quantities
of Adhesive Wear in Low and Medium Carbon Steel 113
Rana Faris, Bara’a Almasri, Hossam Faris, Faris M. AL-Oqla
and Doraid Dalalah

vii

Feature Selection

EvoloPy-FS: An Open-Source Nature-Inspired Optimization
Framework in Python for Feature Selection . 131
Ruba Abu Khurma, Ibrahim Aljarah, Ahmad Sharieh
and Seyedali Mirjalili

Multi-objective Particle Swarm Optimization: Theory, Literature
Review, and Application in Feature Selection for Medical
Diagnosis . 175
Maria Habib, Ibrahim Aljarah, Hossam Faris and Seyedali Mirjalili

Multi-objective Particle Swarm Optimization for Botnet Detection
in Internet of Things . 203
Maria Habib, Ibrahim Aljarah, Hossam Faris and Seyedali Mirjalili

Evolutionary and Swarm-Based Feature Selection for Imbalanced
Data Classification . 231
Feras Namous, Hossam Faris, Ali Asghar Heidari, Monther Khalafat,
Rami S. Alkhawaldeh and Nazeeh Ghatasheh

Binary Harris Hawks Optimizer for High-Dimensional, Low Sample
Size Feature Selection . 251
Thaer Thaher, Ali Asghar Heidari, Majdi Mafarja, Jin Song Dong
and Seyedali Mirjalili

A Review of Grey Wolf Optimizer-Based Feature Selection Methods
for Classification . 273
Qasem Al-Tashi, Helmi Md Rais, Said Jadid Abdulkadir, Seyedali Mirjalili
and Hitham Alhussian

viii Contents

About the Editors

Seyedali Mirjalili is an Associate Professor of Artificial Intelligence at Torrens
University Australia, and internationally recognised for his advances in
nature-inspired artificial intelligence (AI) techniques. He is the author of five books,
100 journal articles, 20 conference papers, and 20 book chapters. With over 12000
citations and H-index of 45, he is one of the most influential AI researchers in the
world. From Google Scholar metrics, he is globally the most cited researcher in
Robust Optimisation using AI techniques. As an IEEE senior member, he has been
the keynote speaker of several international conferences and is serving as an
associate editor of top AI journals including Applied Soft Computing, IEEE
Access, Advances in Engineering Software, and Applied Intelligence.

Hossam Faris is a Professor in the Information Technology Department at King
Abdullah II School for Information Technology at The University of Jordan,
Jordan. Hossam Faris received his B.A. and M.Sc. degrees in computer science
from the Yarmouk University and Al-Balqa’ Applied University in 2004 and 2008,
respectively, in Jordan. He was awarded a full-time competition-based scholarship
from the Italian Ministry of Education and Research to peruse his Ph.D. degrees in
e-Business at the University of Salento, Italy, where he obtained his Ph.D. degree in
2011. In 2016, he worked as a postdoctoral researcher with the GeNeura team at the
Information and Communication Technologies Research Center (CITIC),
University of Granada, Spain. His research interests include applied computational
intelligence, evolutionary computation, knowledge systems, data mining, semantic
web, and ontologies.

Ibrahim Aljarah is an Associate Professor of BIG Data Mining and Computational
Intelligence at The University of Jordan—Department of Information Technology,
Jordan. Currently, he is the Director Assistant to International Affairs Unit at The
University of Jordan. He obtained the bachelor degree in computer science from the
Yarmouk University, Jordan, 2003. He also obtained his master degree in computer
science and information systems from the Jordan University of Science and
Technology, Jordan, in 2006. He participated inmany conferences in the fields of data

ix

mining, machine learning, and big data such as CEC, GECCO, NTIT, CSIT,
IEEENABIC, CASON, and BigData Congress. Furthermore, he contributed in many
projects inUSA such asVehicle Class Detection System (VCDS), PavementAnalysis
Via Vehicle Electronic Telemetry (PAVVET), and Farm Cloud Storage System
(CSS) projects. He has published more than 35 papers in refereed international
conferences and journals. His research focuses on data mining, machine learning, big
data, MapReduce, Hadoop, swarm intelligence, evolutionary computation, social
network analysis (SNA), and large-scale distributed algorithms.

x About the Editors

Introduction to Evolutionary Machine
Learning Techniques

Seyedali Mirjalili, Hossam Faris and Ibrahim Aljarah

Abstract This section first provides an overview of the machine learning field in
artificial intelligence (AI). The most well-regarded classes of methods in AI are dis-
cussed to show where AI optimization algorithms and machine learning techniques
fit in. Different types of learning are briefly covered as well including supervised,
unsupervised, and reinforcement techniques. The last part of this chapter includes
discussions on evolutionary machine learning, which is the focus of this book.

Keywords Machine learning · Artificial Intelligence · Neural network · Support
vector machine · Feature selection · Supervised learning · Unsupervised learning ·
Evolutionary algorithms · Python · Optimization · Reinforcement learning ·
Classification · Regression · Clustering · Dataset

1 Introduction

The field of artificial intelligence (AI) has become incredibly popular in the last
decade. In the past five years, leading information companies largely invested in this
area as reliable solutions to solve business problems in a wide range of industries.
Governments have increased funding for AI research centres across the globe as well.
AI is a broad field and can be divided into several branches:

1. Search methods: This branch of AI includes problem-solving methods to solve
computationally expensive problems. An example is finding an optimal path in
GPS.

2. Machine learning: This branch of AI includes methods that make a computer
capable of learning fromexperience.An example is getting a list of recommended
videos based on the history of videos that you watched in a video-based platform.

S. Mirjalili (B)
Torrens University Australia, Brisbane, QLD 4006, Australia
e-mail: ali.mirjalili@gmail.com

Griffith University, Brisbane, QLD 4111, Australia

H. Faris · I. Aljarah
King Abdullah II School for Information Technology, The University of Jordan, Amman, Jordan

© Springer Nature Singapore Pte Ltd. 2020
S. Mirjalili et al. (eds.), Evolutionary Machine Learning Techniques,
Algorithms for Intelligent Systems, https://doi.org/10.1007/978-981-32-9990-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-32-9990-0_1&domain=pdf
mailto:ali.mirjalili@gmail.com
https://doi.org/10.1007/978-981-32-9990-0_1

2 S. Mirjalili et al.

3. Knowledge representation and reasoning: This branch of AI allows represent-
ing knowledge and inference in a computer. In other words, AI methods in this
class are able to make logical decisions based on a given set of knowledge rules.
An example is a knowledge-based system that is used as a chatbot in customer
service departments.

4. Machine vision: This branch of AI includes techniques that allow computer to
see and understand the world. In other words, the focus is on the perception, pro-
cessing and analysing images, videos, or any other high-dimensional computer
inputs (e.g. depth images and heat map images). An example is a hand gesture
recognition or face detection system in verification systems.

5. Natural Language Processing: In this branch of AI, computers are used to
understand and/or genera a natural language. For instance, a telephone banking
system can assist customer by understanding the sentences and generating proper
responses.

6. Robotics: In this branch of AI, robots are used to intelligently sense, plan, and
act. AI algorithms are mostly used in the planning phase of a robot. An example
is a self-driving car that reads inputs from proximity sensors/cameras, plans, and
uses wheel, engine, brake, etc., to avoid obstacles.

It is hard to draw a line between these classes since they are highly overlapped.
For instance, a searchmethod in the first class might be used for pruning a knowledge
tree in the second class or training a neural network in the fourth class.

The following section providesmore details of searchmethods andmachine learn-
ing branches since they are the main focus of this book.

2 Search Methods in AI

Search methods were of the first AI techniques that became popular in solving chal-
lenging real-world problems. Since the 1940s, a large number of search algorithms
have been proposed to solve search problems. Such search methods can be cate-
gorized as uninformed and informed. In the former category, an algorithm blindly
searches a search space without knowing how ‘close’ or ‘far’ the final solution
is. Some of the uninformed search algorithms are: brute-force search, breadth-first
search, depth-first search, and bidirectional search. Such search algorithms are com-
plete, which means that they eventually find the best solution for a given search
problem. However, we have to provide them with enough computing and storage
resources. For computationally expensive problems, however, such methods are not
practical since they are highly time-consuming.

In the latter category, often called heuristics, the search algorithm uses heuristics
assistant, which is typically a function, to roughly measure how ‘close’ the final
solution is. This means that the search algorithm does not ‘blindly’ looks for the
final solutions andmakes ‘educated decisions’ to efficiently search promising regions
of a search space. Using such heuristic assistances results in higher speed and the

Introduction to Evolutionary Machine Learning Techniques 3

need for significantly low computing and storage devices. However, it comes at the
cost of being incomplete. This means that the search algorithm does not guarantee
finding the best possible solutions for problems. Since the algorithmmakes educated
decisions and search promising areas, however, it is able to find reasonably good
solution in a reasonably short period of time.

Heuristic search algorithms are suitable for solving problems thatwe cannot afford
using blind search methods. The recent significant advancements in computing and
data storage devices have made blind search methods more practical. However, there
are still an extremely large number of problems that cannot be solved with them,
especially those with exponential or factorial growth. Some of the early heuristic
algorithms are: A*, hill climbing [1], and simulated annealing [2].

Early years of heuristic search methods witnessed problem-specific algorithms.
This means that they were designed to solve a specific set of problems. For instance,
the first version of hill climbing was designed to trees for combinatorial problems.
Another propertywas the need to change the heuristic function for different problems.
In other words, they were not general-purpose problem solvers and highly depend
on the problem itself.

Such drawbacks led to the proposal of metaheuristics. In such techniques, the
algorithm considers a search problem as a black box. The heuristic information can
be drawn only using the output of the problem,which is often called objective, cost, or
fitness function. The algorithm constantly looks for a better solution by maximizing
or minimizing the objective function. Since they are problem independent, they have
been widely used in both science and industry.

The field of metaheuristics is one of the fastest growing sub-branches of AI with
a large number of conventional and recent algorithms. They can be divided into two
main classes: evolutionary and swarm intelligence. In the first class, an algorithm
simulates evolutionary phenomena in nature. For instance, genetic algorithm (GA)
[3] mimics the Darwinian theory of evolution, in which fittest animals have higher
chance of survival.

In the swarm-based methods, an algorithm mimics local interactions between
individuals in nature that leads to collaborative problem solving. In an ant colony,
for instance, there is no centralized control unit. However, each ant uses pheromone
to communicate with other ants to find food sources, defend the colony, or help
the queen in babysitting. The ant colony optimization (ACO) [4] algorithm is a
metaheuristic that simulates the process of finding the closest path from a nest to a
food source in any colony.

This book concentrates on the improvements or use of such algorithms in the area
of machine learning. The field of machine learning is full of search and optimization
problems that are computationally very expensive. The computational and storage
growth of the majority of such problems are exponential. Therefore, blind search
methods are not practical to use, so this book focuses on heuristics andmetaheuristics.

4 S. Mirjalili et al.

3 Machine Learning

As discussed in Sect. 1, machine learning is a sub-branch of AI that focuses on the
learning aspect of computers. Learning itself is divided into three classes: supervised,
unsupervised, and reinforcement. In the following paragraphs, these three methods
of learning are discussed with popular methods in each class.

3.1 Supervise Learning

As its name implies, in a supervised learning, there is a supervisor to give the learning
algorithm insights on how much an action or decision is good or bad. In supervised
learning methods, the data set is completely ladled and the learning method can
check whether a particular action is correct or incorrect, and by how much. Popular
supervised machine learning algorithms are as follows:

• Support vector machine [5]: This learning method finds an N-dimensional hyper-
volume in an N-dimensional space to classify a data set with N features.

• Random forest [6]: In this supervised learning method, multiple decision trees
(made or features) are created and merged using a merit factor to provide accurate
classification or prediction rates.

• Neural network [7]: This learning method is made of simple neurons arranged in
multiple layers and connected using a set ofweights. It simulates thewaybiological
neurons work.

3.2 Unsupervised Learning

In this type of learning, the data set is not labelled. This means that the algorithm
should find the labels and define them. Such learning algorithms need to learn the
structure of data set and the relationship between the features.

• K-means clustering [8]: In this technique, the algorithm clusters data into multiple
groups sharing similar or closely related features.

• Self-organizing Neural Networks [9]: In this kind of NN, a learning technique
organizes neurons in a way to minimize an error function designed for a problem.

3.3 Reinforcement Learning

In the reinforcement learning, the learning algorithmgets rewarded in case of a correct
action and/or gets published in case of awrong action. This type of learning simulates

Introduction to Evolutionary Machine Learning Techniques 5

the way that creatures learn through rewards and punishments. Some examples of
reinforcement learning are as follows:

• Qlearning [10]: This learningmethod is based onBellman equation andmaximizes
Q-value.

• Deep Q Network (DQN) [11]: This learning method is similar to Q learning, but
it can be generalized.

• Deep Deterministic Policy Gradient (DDPG) [12]: This method is similar to DQN
but is able to solve problems with continuous action space.

The focus of this book is on supervised learning methods. In the next section, the
use of search methods in machine learning is discussed.

4 Evolutionary Machine Learning

The preceding section introduced the three types of learning methods in the area of
machine learning. Regardless of the type of learning, there are a large number of
challenges and difficulties that should be handled to efficiently use machine learning
techniques. Such problems are often solved by AI search and optimization algo-
rithms. This is exactly the main focus of this book. We try to use the state-of-the-art
techniques to tackle some of the most common challenges in machine learning algo-
rithms of which some of them are discussed as follows:

Training classifiers and prediction methods

Training machine learning techniques is to find the optimal learning parameters and
even the structure to maximum classification or prediction accuracy. This process is
considered as an optimization problem. Gradient-based methods have been popular,
but they suffer from local optima stagnation due to the large number of parameters
involved in the training process. This makes AI heuristic techniques more reliable
alternatives.

Parameter tuning

In addition to the parameters that should be optimized in a trainer, the trainer itself
typically has a number of controlling parameters. For instance, the back-propagation
algorithm [13] for training NNs has two parameters: learning rate and momentum.
Finding an optimal value for such parameters is essential that can be considered as
another search/optimization problem. AI heuristic search methods can be used again
to optimize this problem.

Multiple objectives

In the majority of machine learning techniques, the objective is to minimize the error.
Therefore, the problem can be considered as a single-objective problem. However,
we might need to optimize other objectives simultaneously as well. For instance, one
might minimize the error and the number of features at the same time. Such problems

6 S. Mirjalili et al.

are called multi-objective problems. To solve them, the objective can be aggregated
using a set of weights. The multi-objective formulation can be maintained as well.
In either case, a multi-objective AI search or optimization algorithm can be used to
solve the problem.

Over-/under-fitting

Under-fitting and over-fitting are two common issues in the field ofmachine learning.
In over-fitting, amachine learning technique captures noises in the data. This happens
when themachine learning technique is tooflexible and learns not only the underlying
data pattern but also the noises. On the other hand, under-fitting occurs when the
machine learning technique is ‘rigid’ and cannot even learn the underlying pattern
in the data.

Both over-fitting and under-fitting are undesirable and result in high error rate
in machine learning techniques. Finding a right balance in the structure of machine
learning to prevent these two conflicting issues is a challenge that should be consid-
ered and addressed when using machine learning techniques.

Feature selection

One of the common issues in the area of machine learning is the existence of a large
number of features. To achieve high classification or prediction accuracy, we might
not need to include all the features. Some of the features might be correlated, and
some might be redundant. In the area of feature selection, an optimal set of features
should be found.

5 Structure of the Book

As discussed above, this book presents and proposes a wide range of supervised
machine learning methods. The focus is on the use, adaptation, and improvement
of recent AI search/optimization algorithms to tackle the problems investigated in
Sect. 4. The rest of this book is organized as follows:

Part 1: In the first part of this book, the focus is on classification and prediction.
Several types of neural networks are used to solve problems in the areas of Internet
of things, link prediction, robot navigation, and quantity prediction. The problem
tackled in this part is to improve the training methods and handle multiple objectives
using AI optimization algorithms. In addition, support vector machine is chosen as
the machine learning technique to classify medical data sets as well. Two recent AI
search techniques such as grey wolf optimizer and salp swarm algorithm are used to
improve the learning and tune the parameters of the SVM algorithm.

Part 2: In the second part of this book, the problem of feature selection is tackled
using a wide range of machine learning and AI search/optimization algorithms. An
open-source nature-inspired optimization framework is first proposed to solve feature
selection problems using a wide range of optimization algorithms in Python. Several

Introduction to Evolutionary Machine Learning Techniques 7

AI optimization algorithms including particle swarm optimization, Harris hawks
optimizer, and evolutionary search are then used to select an optimal set of features.

References

1. Selman B, Gomes CP (2006) Hill-climbing Search, Encyclopedia of cognitive science
2. Van Laarhoven PJ, Aarts EH (1987) Simulated annealing. In: Simulated annealing: theory and

applications. Springer, Heidelberg, pp 7–15
3. Holland JH (1992) Genetic algorithms. Sci Am 267:66–73
4. DorigoM, Di Caro G (1999) Ant colony optimization: a newmeta-heuristic. In: Proceedings of

the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), pp 1470–1477
5. Wang L (2005) Support vector machines: theory and applications, vol 177: Springer Science

& Business Media
6. Breiman L (2001) Random forests. Mach Learn 45:5–32
7. Zhang GP (2000) Neural networks for classification: a survey. IEEE Trans Syst Man Cybern

Part C (Appl Rev) 30:451–462
8. Ding C, He X (2004) K-means clustering via principal component analysis. In: Proceedings

of the twenty-first international conference on Machine learning, p 29
9. Ultsch A (1993) Self-organizing neural networks for visualisation and classification. In: Infor-

mation and classification. Springer, Heidelberg, pp 307–313
10. Watkins CJ, Dayan P (1992) Q-learning. Mach Learn 8:279–292
11. Sorokin I, Seleznev A, Pavlov M, Fedorov A, Ignateva A (2015) Deep attention recurrent

Q-network. arXiv preprint arXiv:1512.01693
12. Barth-Maron G, Hoffman MW, Budden D, Dabney W, Horgan D, Muldal A et al (2018)

Distributed distributional deterministic policy gradients. arXiv preprint arXiv:1804.08617
13. Hirose Y, Yamashita K, Hijiya S (1991) Back-propagation algorithm which varies the number

of hidden units. Neural Netw 4:61–66

http://arxiv.org/abs/1512.01693
http://arxiv.org/abs/1804.08617

Classification and Predication

Salp Chain-Based Optimization
of Support Vector Machines and Feature
Weighting for Medical Diagnostic
Information Systems

Ala’ M. Al-Zoubi, Ali Asghar Heidari, Maria Habib, Hossam Faris,
Ibrahim Aljarah and Mohammad A. Hassonah

Abstract Nowadays, medical diagnosis based on machine learning is an essential,
active, and interdisciplinary research area. Making smart diagnosis and decision sup-
port systems have a profound impact on healthcare informatics. Integrating machine
learning classifier systems into computer-aided diagnosis systems promotes the early
detection of diseases, which results in more effective treatments and prolonged sur-
vival. In this chapter, we address popular diagnosis problems using an evolutionary
machine learning approach which performs feature weighting and tuning the pa-
rameters of support vector machines (SVMs) simultaneously. A new and powerful
metaheuristic called salp swarm algorithm is combined with SVM for this task. The
designed SSA-SVM approach shows several merits compared to other SVM-based
frameworks with well-regarded algorithms such as genetic algorithm (GA) and par-
ticle swarm optimization (PSO).

Keywords Medical diagnostic · Machine learning · SVM · SSA · Feature
weighting

A. M. Al-Zoubi · M. Habib · H. Faris (B) · I. Aljarah · M. A. Hassonah
King Abdullah II School for Information Technology,
The University of Jordan, Amman, Jordan
e-mail: hossam.faris@ju.edu.jo

A. M. Al-Zoubi
e-mail: alaah14@gmail.com

M. Habib
e-mail: maryahabeeb@yahoo.com

I. Aljarah
e-mail: i.aljarah@ju.edu.jo

M. A. Hassonah
e-mail: mohammad.a.hassonah@gmail.com

A. A. Heidari
School of Surveying and Geospatial Engineering, College of Engineering,
University of Tehran, Tehran, Iran
e-mail: as_heidari@ut.ac.ir; aliasgha@comp.nus.edu.sg; t0917038@u.nus.edu

Department of Computer Science, School of Computing,
National University of Singapore, Singapore, Singapore

© Springer Nature Singapore Pte Ltd. 2020
S. Mirjalili et al. (eds.), Evolutionary Machine Learning Techniques,
Algorithms for Intelligent Systems, https://doi.org/10.1007/978-981-32-9990-0_2

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-32-9990-0_2&domain=pdf
mailto:hossam.faris@ju.edu.jo
mailto:alaah14@gmail.com
mailto:maryahabeeb@yahoo.com
mailto:i.aljarah@ju.edu.jo
mailto:mohammad.a.hassonah@gmail.com
mailto:as_heidari@ut.ac.ir
mailto:aliasgha@comp.nus.edu.sg; t0917038@u.nus.edu
https://doi.org/10.1007/978-981-32-9990-0_2

12 A. M. Al-Zoubi et al.

1 Introduction

Artificial intelligencemethods have increasing benefits for experts inmedical diagno-
sis, which minimize potential errors of inexperienced physician or even could reduce
the cost of patients monitoring using Internet-based remote techniques. Making ac-
curate, reliable diagnosis at early stages of disease could result in significant positive
impact on patient’s life. Knowledge discovery based on data mining techniques is
the process of searching into large amount of data, in order to reveal hidden pattern
of data and produce useful information [1]. Essentially, the outcome of knowledge
discovery is used to train computer-aided diagnosis (CAD) systems to support effi-
cient decision making. CAD systems are emerging kind of applications for clinical
support systems and decision support systems for disease diagnosis. A pioneering
example is the IBM’s Watson computational system that identifies the presence of
lung, prostate, and breast cancer by dissecting large amount of medical data, and it
provides recommendations on treatment options [2].

Our contemporary society is witnessing increasing advances in several fields
which is correlated under the industrial and technological revolutions that lead to
a surging growth of chronic diseases. Nowadays, chronic diseases are serious health-
related problem [3]. According to the National Statistics in UK, liver disorder forms
the fifth common factor for death [4]; in USA, the heart disease forms a leading
reason for death every year. The continuous developments in science and medical
technologies are producing high volume of data at diverse levels of biological sys-
tems. Significantly, analyzing and interpreting pervasive, multivariate, and complex
medical datasets have massive benefits for transnational or personalized medicine.
Over the decades, several research studies have been conducted based on machine
learning and data mining techniques for the sake of smart interpretation and analysis
of data.

Interestingly, machine learning algorithms have achieved successful deployment
in various medical-related problems; for instance [5] showed promising deployment
of ensemble learning for schizophrenia prediction, while [6] applied a deep learning
approach for Alzheimer’s disease prediction and classification. In [7], the authors uti-
lized deep reinforcement learning for lung cancer prediction. Whereas [8] attempted
to improve the prediction of Parkinson’s disease by proposing a multiple feature
evaluation approach of a multi-agent system, which implemented on several classifi-
cation schemes, nonetheless [9] adopted the convolutional neural network for breast
cancer prediction, and in [10] the authors used the neural networks for breast and
liver classification. Moreover, different smart classifiers have been applied for the di-
agnosis of diabetes [11–13]; further, in [14, 15] diverse machine learning classifiers
have been applied for liver disorder diagnosis.

Machine learning tools have been showing unprecedented opportunities for med-
ical diagnosis [16]; however, among all, support vector machines demonstrated an
eminent promising capability for disease diagnosis [17–22].

Support vector machines (SVMs) are one of the most popular and powerful sta-
tistical machine learning methods, which proposed essentially for supervised binary

Salp Chain-Based Optimization of Support Vector … 13

classification by Vapnik [23]. SVMs make use of support vectors and hyperplanes to
identify the decision boundaries between two classes, by maximizing the marginal
distance between the hyperplane and the corresponding data instances. SVMs use
a kernel function that maps data instances into higher-dimensional space, which
makes the process of classes’ separation easier and accurate. Certainly, SVMs have
been adopted into several application areas, such as: bioinformatics [24, 25], pattern
recognition [26, 27], feature selection [28–30], handwritten digit recognition [31,
32], text categorization [33, 34], and image classification [35, 36].

SVMs have superior merits over their counterpart algorithms, since they have stel-
lar generalization ability, a capability to produce high-quality decision boundaries,
and the ability to deal with complex and nonlinear classification problems [37]. How-
ever, SVMs are extremely sensitive to the initial values of their parameters: the cost
(C) and the gamma (γ) parameter of the radial basis function (RBF) kernel [38]. In
other words, the accuracy of SVM classifier depends highly on its kernel function,
kernel parameters, and the dataset properties, which all influence each other con-
versely. Therefore, optimizing the algorithm’s parameters and the dataset features
are at crucial importance to maintain the computational efficiency as robust classifier
model.

TheC parameter defines a penalty for mis-classified instances; an increased value
for C increases the penalty and decreases the number of data points in the error mar-
gin, while the gamma parameter is particular for Gaussian SVMs, where it affects
the linearity of the hyper-line that separates the hyperplanes. Increasing the value of
gamma parameter too much might result in overfitting [39]. Optimizing the hyperpa-
rameters of SVMs is critically important; hence, one of the early beginning solutions
is the grid search, which is a traditional method that searches for the optimal values
of the hyperparameters. However, the grid search technique is exhaustive and time-
consuming, and might not performwell [40]. Nevertheless, it cannot perform feature
selection as well.

In this chapter, we propose the application of recent swarm intelligent algorithm
for tuning the parameters of SVM and optimizing the weights of the input features
simultaneously. SSAwas proposed byMirjalili [41], and it is inspired by the foraging
behavior of salps, where it mainly imitates the creation of salp chains when searching
for food. The proposed SSA-SVM approach is applied on three medical-related
datasets drawn from UCI repository [42]; the datasets represent the liver disorder
disease, heart disease, and Parkinson’s disease. The experiments reveal superior
performance results for SSA-SVM approach over other well-regarded metaheuristic
algorithms: the genetic algorithm and the particle swarm optimization.

The rest of the chapter is organized as follows; Sect. 2 reviews themain approaches
onmetaheuristics in combination with SVM , Sect. 3 presents a background for SVM
andSSA, Sect. 4 describes the proposed SSA-SVMapproach, Sect. 5 is the conducted
experiments and obtained results, and finally, Sect. 6 presents concluding remarks.

14 A. M. Al-Zoubi et al.

2 Related Works

Mainly, SVM algorithm is facing two major problems in order to produce efficient
classifier model: firstly selecting the best proper kernel parameters, and secondly,
how to select the most important set of features. Feature selection is the process
of removing redundant and noisy features, yet, keeping the informative features.
Wrapper-based feature selection is kind of methods that depend on a performance
metric, for example the accuracy, from the induction algorithm tomeasure the quality
of the selected features subset.

Having the optimal set of features can be accomplished by feature selection or
feature weighting. The former assigns binary weights either 0 or 1, which means the
feature either deleted or kept. The latter assigns integer weights based on a feedback
from the induction algorithm. Feature weighting has some advantages over feature
selection methods, such as requiring less preprocessing time and less data instances
to present good settings [43]. Typically, selecting proper kernel parameter settings,
alongside, the best subset of features requires SVMs to use more effective search
algorithm than the traditional grid search.

Metaheuristic algorithms are stochastic search algorithms that often utilized to
solve hard optimization problems during a logical time [44]. There are many swarm-
based optimizers such as dragonfly algorithm (DA) [45], gray wolf optimizer (GWO)
[46], salp swarmalgorithm (SSA) [41],Harris hawksoptimization (HHO) [47],moth-
flame optimizer (MFO) [48], water cycle algorithm (WCA) [49], multi-verse opti-
mizer (MVO) [50], ant lion optimizer (ALO) [51], and whale optimizer algorithm
(WOA) [52]. Primarily, metaheuristic methods incorporate a randomization com-
ponent that equips them with the ability to explore different regions of the search
space, which enhance solution diversity and avoid stuck in local optima [53, 54].
Basically, different nature-inspiredmetaheuristic algorithms have been implemented
for SVM’s parameter optimization, such as the particle swarm optimization [55], ge-
netic algorithm [56–58], bacterial algorithm [59], optimal foraging algorithm [60],
sine-cosine algorithm [61], and an artificial immune algorithm [62]. Furthermore
[63] presented a comparison for performance evaluation among several bio-inspired
metaheuristics, for hyperparameter tuning of SVM classifiers.

Further, throughout the literature, metaheuristics have been applied widely for
addressing feature selection [37, 64–67]; however, few algorithms have been de-
signed for optimizing SVM’s parameters, simultaneously, with feature selection. In
particular, different evolutionary or swarm-based algorithms have been applied for
both feature and parameter optimization; thus, authors in [29] adopted grasshopper
optimization, while [68] hybridized chaotic search and gravitational search algorithm
[69, 70] integrated the use of particle swarm optimization; moreover [71–73] uti-
lized the genetic algorithm [37] used a multi-verse optimizer approach [74] applied
a self-adaptive cohort intelligence, while [75, 76] presented the use of ant colony
optimization.

Interestingly [38] proposed a hybrid model of genetic algorithms and SVM for
featureweighting and parameter optimization. To the best of our knowledge, very few

Salp Chain-Based Optimization of Support Vector … 15

studies have been focused on optimizing SVM’s hyperparameters and performing
feature weighting. Hence, in this chapter, a new bio-inspired metaheuristic algorithm
called salp swarm algorithm (SSA) has been integrated with SVM to create robust,
accurate classifier and feature weighting model in the context of medical diagnosis.

3 Preliminaries

In this section, we provide a brief review on the concepts and mathematical founda-
tions of the utilized techniques.

3.1 Support Vector Machines (SVMs)

SVM is considered as one of the most powerful and well-regarded algorithms in the
literature.1 The main idea behind this SVM is to computationally fit a hyperplane
to separate the datasets with d-dimensions seamlessly into two classes. As the input
data is not always linearly separable, a kernel-induced feature space can be utilized
within SVMs. Additionally, it is possible to attain the VC dimension of SVMs, which
is a metric of a method’s likelihood to carry out healthy on unobserved info. This
is not similar to other learning approaches, for instance, neural networks (NNs),
for which we have no proper metric. Generally speaking, SVMs are simple to be
implemented, intuitive, hypothetically well established, and the literature shows that
SVMs have found their own place among other learning models. SVMs are one of
the most utilized classifiers in the literature due to their advantages compared to
other learning models. This model only considers the data samples nearby the class
boundary to discover a hyperplane for maximizing the margin existing among the
classes [77].

As an input to SVM, we have a set of N training vectors {xn}Nn=1 and their class
labels {yn}Nn=1, where xn ∈ RD and yn ∈ {−1, 1}. To start with, let us consider that
two classes have to be linearly separable. The hyperplane that is able to separate the
classes is obtained via [77]:

wT xn + b = 0, (1)

where

wT xn + b ≥ 1 for yn = +1, (2)

wT xn + b ≤ −1 for yn = −1. (3)

1The content of this section is based on the lecture note on Mathematical Foundations of Artificial
Intelligence of Prof. Daniel Gildea at University of Rochester [77]. We acknowledge their efforts
for providing such useful materials, publicly. For full access, refer to http://www.cs.rochester.edu/
~gildea/.

http://www.cs.rochester.edu/~gildea/
http://www.cs.rochester.edu/~gildea/

16 A. M. Al-Zoubi et al.

Consider that H1 and H2 are two hyperplanes. The purpose is tomaximize themargin
M among two classes. Hence, the objective function can be obtained via:

max
w

M

s.t. yn(wT xn + b) ≥ M,

wTw = 1.

The margin M can be 2
‖w‖ . Therefore, we have:

min
w

1

2
wTw

s.t. yn(wT xn + b) ≥ 1

In the case of nonlinearly separable classes, we consider slack variables {ξn}Nn=1 and
permit some points to be located on a wrong side of the hyperplane considering some
cost. Therefore, we have this new cost function:

min
w

1

2
wTw + C

N∑

n=1

ξn

s.t. yn(wT xn + b) + ξn ≥ 1,

ξn ≥ 0, ∀n.

The parameter C is adjusted based on a development set. This model can be consid-
ered and solved as an initial optimization case to handle SVMs.

Let us consider the Lagrangian for the primal case; hence, we have:

L (w, b, ξ, α, μ) = 1

2
wTw + C

N∑

n=1

ξn −
∑

n

αn
[
yn(wT xn + b)

]

−
∑

n

αnξn +
∑

n

αn −
∑

n

μnξn,

where αn and μn , 1 ≤ n ≤ N are Lagrange multipliers. Now, we differentiate the
Lagrangian with regard to the variables:

∂

∂w
L (w, b, ξ, α, μ) = w −

∑

n

αn ynxn = 0 (4)

∂

∂b
L (w, b, ξ, α, μ) = −

∑

n

αn yn = 0 (5)

Salp Chain-Based Optimization of Support Vector … 17

∂

∂ξn
L (w, b, ξ, α, μ) = C − αn − μn = 0 (6)

After solving these rules, we have:

w =
∑

n

αn ynxn (7)

∑

n

αn yn = 0

αn = C − μn (8)

Now, we obtain the dual function:

g(α, μ) = 1

2

∑

n

∑

m

αnαm yn ymxnT xm −
∑

n

∑

n

αnαm yn ymxnT xm +
∑

n

αn

=
∑

n

αn − 1

2

∑

n

∑

m

αnαm yn ymxnT xm (9)

Based on the rules in Eqs. (8) and (9), we can obtain the dual optimization problem
as follows:

max
α

∑

n

αn − 1

2

∑

n

∑

m

αnαm yn ymxnT xm (10)

s.t. 0 ≤ αn ≤ C. (11)

This dual problem is concave and simple to tackle. The dual variables (αn) are
located inside a box having side C . We can often adjust two values αi and α j simul-
taneously and numerically handle this formulation. At the end, we plug in the values
of the α∗

n ’s to the rules in Eq. (7) to attain the solution w∗.

3.2 Salp Swarm Algorithm

Imitating the daily behaviors of salps in nature inspired the researchers to develop
a new optimizer in 2017 [78]. This algorithm has found its place in dealing with
many problems including electrical engineering, feature selection [79, 80], and other
disciplines [81]. These creatures have a well-organized foraging mechanism that
helps them to find the required food source per day and increases their chance of
survival.However, these activities cannot bemodeled exactly basedonnature because
a complex model will not help the optimization community to solve a problem in an
efficient way. The SSA shows an efficient performance and a good sense of balance

18 A. M. Al-Zoubi et al.

Fig. 1 A salp chain

Leader salp
Follower salp

Direction of motion

between its core searching engines. The main process of this method depends on a
chain-shaped team-dependent structure, in which each salp has a leader and all salps
cooperate to find a food source. This mechanism leads to a condition that a leader
salp (food source) guides all members to assist them in finding a favorable region.
The mathematical model and operators of SSA are presented as follows.

Like any other population-basedmethod, SSA consists of a series of search agents
(salps) to be evolved and increases their quality based on ameasured criterion (fitness
function). To evolve the quality of solutions and guarantee the convergence behavior
of SSA,we first select the best global solution as the leader salp, and then allmembers
of the swarm will follow this agent using a chain-based path to find a high-quality
solution (optimum point or optimal solutions) at the termination point of the process.
The concept of a salp chain is demonstrated in Fig. 1.

In SSA, we have an initial swarm X , which includes N salps with d-dimensions,
as shown in Eq. (12):

Xi =

⎡

⎢⎢⎢⎣

x11 x12 . . . x1d
x21 x22 . . . x2d
...

... . . .
...

xN
1 xN

2 . . . xN
d

⎤

⎥⎥⎥⎦ (12)

To guide the population toward a food source, we need to update the position of
leader in a gradual manner. Hence, we have to update the position of leader based
on Eq. (13):

x1j =
{
Fj + c1

((
ub j − lb j

)
c2 + lb j

)
c3 ≥ 0.5

Fj − c1
((
ub j − lb j

)
c2 + lb j

)
c3 < 0.5

(13)

where x1j shows the leader and Fj shows the position of food source in the j th

dimension, ub j and lb j are the boundaries of j th dimension, c2 and c3 denote random
numbers inside [0, 1], and c1 is a time-varying parameter formulated as in Eq. (14):

c1 = 2e−(4t
L)2 (14)

Salp Chain-Based Optimization of Support Vector … 19

where t is iteration and L is the maximum limit of t . The parameter c1 is designed
initially to control the mechanisms of diversification and intensification trends in
SSA. Using this adaptive parameter, a more smooth transition can happen. In the
previous step, we explained how to update the leader salp. Here, we see the rule in
Eq. (15) to adjust the position of follower salps.

xij = xij + xi−1
j

2
(15)

where i ≥ 2 and xij is the position of i th solution at the j th dimension.
The pseudo-code of SSA is represented in Algorithm 1.

Algorithm 1 Pseudo-code of SSA
Create the initial swarm xi (i = 1, 2, . . . , n)

while (Termination condition is not reached) do
Evaluate the fitness values
Set the food source F
Update c1 using Eq. (14)
for (each salp (xi)) do

if (i <= n/2) then
Update the leader by Eq. (13)

else (i > n/2 and i < n + 1)
Update the followers by Eq. (15)

end if
end for
Update each solution with regard to the legal limits
Remove illegal salps (out of limits).

end while
Return F

4 Proposed SSA-SVMModel

In this section, the proposed classificationmodel basedonSSAandSVMisdescribed.
In this model, SSA is utilized to simultaneously perform two main tasks: The first
is to automatically weight the input features, while the second is to optimize the
hyperparameters of the SVMmodel. For this, design details, evaluation criteria, and
the architecture of the model are discussed in the following subsections.

20 A. M. Al-Zoubi et al.

4.1 Individual Representation

Asmentioned earlier, the search algorithm is designed and prepared to solve complex
problems. In our case, SSA is applied for two parts; the first part consists of searching
for the optimal parameters of the SVMclassifier, which areC and γ , while the second
part is responsible for weighting the features of the dataset as shown in Fig. 2. In other
words, the number of values that the SSA covers is the two parameters alongside
the number of features for each dataset D. These values are combined in one vector
denoted as D + 2, where all the values fall in the interval [0, 1].

The first two values of the vector are the C and γ parameters; their search space
is different from the initial scale, where C is scaled to be in the interval [0, 35,000],
while γ is in the interval [0, 32]. The scaled transformation is based on the min-max
normalization equation (see Eq.16).

B = A − minA

maxA − minA
(maxB − minB) + minB (16)

The remaining values in the vector match the features of the dataset to be utilized
for weighting, however, without modifying the original scale. Additionally, each
value is multiplied by its matching feature value for every instance. Therefore, in
case we have a dataset of 50 instances, the value that corresponds to that feature
is multiplied by all the values of the 50 instances for that specific feature (see the
solution structure in Fig. 2).

4.2 Fitness Evaluation

In every iteration, the evaluation is performed for each individual using the selected
fitness function. Thus, the SSA can have the feedback to execute. The fitness function
in our case is the classification accuracy and calculated as shown in the following
equation:

f i tness(I ti) = 1

K

K∑

k=1

1

N

N∑

j=1

δ(c(x j), y j) (17)

where c(x j) denotes the accuracy of the j th instance of the testing set, while y j is
the j th actual label, and δ is the relation between y j and c(x j); if, for example, y j =
c(x j), then δ = 1, and if not, then δ = 0. N and K are the number of instances and
number of folds in the testing set, respectively.

Salp Chain-Based Optimization of Support Vector … 21

Parameters of SVM Feature weighting part

Normalization

Dataset with
weighted features
utilized to train

SVM

Generate the optimized
SVM based on the input
features and parameters

Training dataset

Weighted training
dataset

w1 w2 ... wD cost gamma

Return the
fitness
value

Feature
weighting

Fig. 2 Solution structure

4.3 System Architecture

The proposed approach commences by splitting the dataset into training and testing
sets, and the number of splits is specified by using the same number of experiments.
For example, the dataset is divided into k folds, and then the number of experiments
will be the same as k, where k − (1/k) folds are for training, and rest 1/k is for the
testing set. This will guarantee the highest possible diversity of training and testing
sets, in order to achieve the most optimal model.

The SSA starts executing by generating a random vector of real numbers, which
corresponds to the setting of C and γ , alongside the weights of every feature. After-
ward, the SVM classifier begins its training process by running the weighted training
split. An inner cross-validation is performed during the training phase, in order to
produce a more robust model and to avoid overfitting.

After the training process is finished, SSA will receive the fitness value from the
SVM classifier represented by the classification accuracy. All the previous processes
will go through a repetition process until the termination criterion for the SSA is
met. The termination criterion in our work is the maximum number of iterations.
When the number is reached, the optimal individual will be returned by the SSA.
The selected individuals are finally used for the testing phase. In the end, for k times,
all aforementioned steps are repeated, and the average accuracy out of all k times is
considered (see Fig. 3).

22 A. M. Al-Zoubi et al.

Datasets

Testing set Training set

Weighted features

Testing set with
weighted features

Training set with
weighted features

Check the
Termination
condition?

Optimized SVM and
feature weights

Yes

parameters of
SVM (C,) and

 weighted
features

No

Evaluation according to
testing set

Cross-validation

Train SVM

Assess SVM based on
weighted features

Steps of
SSA

Pre-processing

Fig. 3 Proposed SSA-based process

5 Experiment and Results

This section elaborates on the performance of the proposed SSA-based SVM classi-
fier to detect the best approach that deals with the classification of medical datasets.
The superiority of SSA should be validated using a comparative study to detect the
real hidden exploration and exploitation potentials of the SSA and its ranking posi-
tion compared to well-established methods. For this purpose, in this study several
experiments are performed using different metrics for more robust classification.

Salp Chain-Based Optimization of Support Vector … 23

5.1 Experimental Setup

Fairness of comparisons is guaranteed by performing the experiments in the same
conditions through different aspects. All methods are performed using the same
programming language and computer with the details reported in Table2. Note that
the details of system may only affect the speed of computations, but it has no impact
on either the accuracy of results or the quality of solutions. Only if we need to record
the time results and compare different methods based on elapsed time, details of
hardware can help us to have a better interpretation on the performance of different
methods.

Three well-known datasets are used for the experiments which were drawn from
the UCI repository [82]. The details of the datasets are reported in Table1. These
problems can substantially validate the efficacy of the proposed SSA-based learning
model because they cover a varied spectrum of details and characteristics (e.g.,
number of features, instances, and classes).

The details of our experiments are reported in Table3. As shown in Table3,
the same population size for all algorithms is used. It is important to note that the
population size of swarm-based algorithms plays an essential role in the resulted
performance. As we increase the population size, the required computational efforts
for initializing and updating the candidate solutions also increase without any clear
internal exploratory and exploitative advantages. If we reduce the population size
to small values, we should be careful about the negative impact on the efficacy as
well because we need enough agents to broadly scan and explore different regions of

Table 1 List of used datasets

Dataset No. of features No. of instances No. of classes

1 Liver disorders 6 345 2

3 Parkinsons 22 195 2

3 SAheart 9 462 2

Table 2 Detailed settings of the utilized system

Name Settings

Hardware

CPU Intel Core(TM) i5-6400 processor

Frequency 2.70GHz

RAM 8GB

Hard drive 500GB

Software

Operating system Windows 7 (64 bits)

Language MATLAB R2016a

24 A. M. Al-Zoubi et al.

Table 3 Detail of runs

Item Settings

Splitting criteria Tenfold

Population size 30

Iterations 50

the feature space. Hence, we need to set a proper number of initial set of solutions.
After several trial and errors, we set the population size to 30. This number is not
too large to increase the computational time of algorithms without any constructive
impact on the performance metrics and not too small to cause negative impacts of
the exploratory performance of algorithms. A population-based optimizer like GA
[83], PSO, and SSA needs to be repeated enough to find all possible high-quality
solutions within the search space. So, we repeated the experiments 50 times in each
run. This means the internal iteration number of these methods is set to 50. We also
used tenfold cross-validation to record and compare the efficacy of all algorithms.

We also reported the detailed settings of GA and PSO methods in Table4. It
is important to set the initial parameters of PSO and GA, carefully, as the initial
parameters of the population-based optimizers such as GA and PSO have significant
impact on the resulted performance of these methods. Hence, they should be set
based on domain knowledge, sensitivity analysis, properties of the target problem,
and dimensions of the feature space. We set these parameters after a sensitivity
analysis and several initial experiments are performed.

5.2 Results and Observations

The classification results of the proposed SSA-based approach are compared to those
obtained by the GA-based and PSO-based methods in Table5. Note that these re-
sults are recorded based on experimenting the liver disorder dataset. In addition, we

Table 4 Parameter settings

Algorithm Parameter Value

GA Single-point crossover 1

Mutation 0.01

Roulette wheel selection

PSO Topology fully connected

Inertia factor 0.3

c1 1

c2 1

Salp Chain-Based Optimization of Support Vector … 25

statistically compare different metrics including accuracy, recall(S), precision(F),
precision(S), F-measure, and G-mean measures. The average (Avg) and standard de-
viation (Std) of results are recorded and reported based on all performed simulations.

As per results in Table5, we see that the results of SSA-based technique are
improved in terms of average and STD of accuracy results.

If we see the results in terms of other metrics, we observe the same pattern. Ad-
ditionally, the PSO-based approach is observed to be superior to the well-known
GA-based method in terms of accuracy results. Statistical test also affirms the signif-
icant gaps between the observations. The obtained p-values in Table8 are less than
0.05. This indicates that the null hypothesis has failed and the difference in results is
significant. Other statistical tests can be used; however, this depends on the evaluated
results and their characteristics.

The classification results of the proposed SSA-based method are compared to
those recorded by the GA-based and PSO-based algorithms in Table6. The results
are attained based on experimenting the Parkinson dataset.

As the results are shown in Table6, SSA-based technique has achieved the best
performance in terms of average and Std of accuracy results. If we have a look at
the p-values in Table8, it is also seen that they are less than 0.05, which as well
indicate that the null hypothesis has failed and the difference in results is significant.
In terms of different metrics, the superiority of the proposed SSA-based technique is
also observed. Based on results, we see the GA can show a slightly better accuracy
rate compared to the PSO.

The accuracy results for SAheart dataset are shown in Table7. We can see that the
results evolved using salp chain-based movements are better than those obtained by
GAandPSOalgorithms.According toG-meanmetric,we also see better results of the
proposed SSA-based method. In addition, F-measure results support the superiority
of the results. Checking the p-values in Table8, it is also seen that the values are
less than 0.05, which reveal that the null hypothesis has failed and the difference in
results is significant.

The reasons that the SSA can show better results are not limited to a few remarks.
First, the main difference between these algorithms is that they utilize different
strategies to update and evolve the population. Generally speaking, evolutionary
backgrounds of these methods are not similar. The proposed SSA-based optimizer
uses a harmonized chain of salps (search agents) to update the swarm, while there is
a leader salp or food source to guide all members of the population in each iteration.
The other competitor, PSO, has a differentway to evolve the swarm. PSO employs the
global best and current best solutions of the population to lead the evolving solutions
toward the better regions of the feature space. Hence, it has a memory, which in the
case of local optima may decrease the quality of agents in several iterations.

26 A. M. Al-Zoubi et al.

Ta
bl
e
5

C
la
ss
ifi
ca
tio

n
re
su
lts

fo
r
liv

er
di
so
rd
er

da
ta
se
t

A
lg
or
ith

m
A
cc
ur
ac
y

R
ec
al
l(
F)

R
ec
al
l(
S)

Pr
ec
is
io
n(
F)

Pr
ec
is
io
n(
S)

F-
m
ea
su
re

G
-m

ea
n

A
vg

St
d

A
vg

St
d

A
vg

St
d

A
vg

St
d

A
vg

St
d

A
vg

St
d

A
vg

St
d

G
A

68
.0
84

8.
34
0

61
.5
83

15
.0
00

71
.5
21

12
.1
03

58
.1
34

16
.9
44

74
.8
04

9.
87
2

58
.5
71

14
.3
91

65
.4
97

9.
31
3

PS
O

68
.4
29

6.
77
6

65
.7
50

15
.3
37

70
.0
54

6.
31
2

53
.3
83

9.
84
6

78
.9
74

9.
56
9

58
.3
41

9.
75
4

67
.4
78

8.
71
5

SS
A

73
.6
72

6.
92
9

71
.4
32

7.
95
7

75
.1
33

11
.2
79

62
.5
11

15
.5
25

82
.5
03

4.
45
7

65
.5
66

10
.3
39

72
.8
80

5.
87
3

Salp Chain-Based Optimization of Support Vector … 27

Ta
bl
e
6

C
la
ss
ifi
ca
tio

n
re
su
lts

fo
r
Pa
rk
in
so
n
da
ta
se
t

A
lg
or
ith

m
A
cc
ur
ac
y

R
ec
al
l(
F)

R
ec
al
l(
S)

Pr
ec
is
io
n(
F)

Pr
ec
is
io
n(
S)

F-
m
ea
su
re

G
-m

ea
n

A
vg

St
d

A
vg

St
d

A
vg

St
d

A
vg

St
d

A
vg

St
d

A
vg

St
d

A
vg

St
d

G
A

92
.7
63

7.
48
8

93
.7
66

6.
91
9

91
.5
71

11
.9
38

96
.2
55

5.
20
1

84
.1
19

16
.4
03

94
.8
97

5.
41
2

92
.5
20

8.
51
0

PS
O

92
.3
42

8.
60
0

93
.7
03

7.
24
3

89
.7
02

15
.8
04

95
.5
13

7.
42
2

81
.6
31

22
.0
25

94
.5
21

6.
71
8

91
.3
99

10
.3
86

SS
A

96
.3
95

4.
23
3

97
.3
33

5.
62
2

95
.0
00

8.
05
1

97
.9
05

3.
37
6

93
.8
10

13
.0
99

97
.4
86

2.
94
7

96
.0
05

4.
26
2

28 A. M. Al-Zoubi et al.

Ta
bl
e
7

C
la
ss
ifi
ca
tio

n
re
su
lts

fo
r
SA

he
ar
td

at
as
et

A
lg
or
ith

m
A
cc
ur
ac
y

R
ec
al
l(
F)

R
ec
al
l(
S)

Pr
ec
is
io
n(
F)

Pr
ec
is
io
n(
S)

F-
m
ea
su
re

G
-m

ea
n

A
vg

St
d

A
vg

St
d

A
vg

St
d

A
vg

St
d

A
vg

St
d

A
vg

St
d

A
vg

St
d

G
A

70
.1
20

7.
34
0

73
.9
23

8.
22
8

61
.4
79

14
.4
86

84
.3
08

7.
76
7

45
.0
76

10
.3
49

78
.3
88

5.
75
5

66
.7
97

8.
69
7

PS
O

69
.6
76

6.
32
0

74
.5
82

6.
85
9

57
.4
40

14
.1
13

81
.5
07

6.
96
4

47
.6
97

12
.3
00

77
.6
89

5.
31
3

65
.0
07

8.
51
3

SS
A

72
.3
03

7.
24
6

75
.4
70

8.
03
6

65
.5
13

13
.6
31

84
.8
56

8.
77
1

48
.4
54

10
.5
18

79
.5
96

6.
87
1

69
.9
42

8.
20
2

Salp Chain-Based Optimization of Support Vector … 29

Table 8 P-value of the comparisons

Data PSO GA

Liver disorders 3.12E−06 2.58E−07

Parkinsons 2.54E−04 2.00E−03

SAheart 3.68E−02 1.42E−02

The GA has another philosophy, in which genes evolve based on crossover and
mutation schemes. Again, in the case of immature convergence, GA cannot jump out
of the local optima in all iterations. Hence, in a gradual manner, the quality of the
solution shows unstable behavior without significant improvement. We observed,
in terms of exploration, the SSA can make a better balance between exploratory
and exploitative leanings to avoid stagnation downsides, while the basic PSO cannot
gain a fine balance. Same statement happens for the comparison of the GA and
SSA. Another reason is that none of the PSO-based and GA-based techniques has a
dynamic nature similar to that utilized in SSA. SSA uses a parameter c1 to control
the interchange between the searching propensities. This helps SSA to make a more
stable balance in the case of immature convergence and stagnation.

However, note that, according to the no free lunch (NFL) theorem [84], no opti-
mizer can always be a winner algorithm. Accurately, SSA may not outperform the
PSO and GA using some other datasets. The reason is that an optimizer can show
its best performance for a limited set of problems, and if we increase the number of
problems to infinite, all optimizers will perform similarly. That is, they win some
games, but they will lose the rest of the competitions.

The real scenario is that we never face all problems in the world; hence, we do
not need to provide a universally best optimizer. In most of the real-world problems,
companies or third parties only request a well-designed competitive optimizer to
find the optimal decisions for their problems. As per the NFL, we do not need to
always utilize a previously winner optimizer because it may fail this time. This
means that we can develop an optimization approach for a specific problem and
then it can be better than previous methods. However, if we change the problem,
there will be no guarantee to repeat the observations. That new approach may not
generate superior results anymore. Nonetheless, this is why we need to understand
the nature of the problem before solving it: its characteristics, reasons of selecting a
specific optimizer, the role of initial parameters and settings, and diversification and
intensification behaviors of the selected optimizer in dealing with similar problems.

6 Conclusion and Future Directions

In essence, analyzing and interpreting large amount of medical data can enhance
the quality of disease diagnosis and improve the functionality of the health infor-
mation systems. This chapter proposed a new approach for feature weighting and

30 A. M. Al-Zoubi et al.

model selection, which implemented the SSA in combination with support vector
machines. The SSA-SVM approach was applied to three widespread medical cases.
The purpose was to predict the presence of liver disorder disease, the heart disease,
and Parkinson’s disease. Experiments show that the SSA-SVM has superior perfor-
mance and enhanced results in terms of accuracy, recall, precision, F-measure, and
G-mean. Compared to the GA and PSO, SSA-SVM is able to prove attractable merits
that make it a potential approach be applied for computer-aided diagnosis systems.

SSA is still a new method; hence, there are many chances to enhance its structure
to reach to higher levels of exploration and exploitation. Such a direction will also
lead to enriched performance of the developed SVM-based framework.

References

1. Cios KJ, Pedrycz W, Swiniarski RW (2012) Data mining methods for knowledge discovery,
vol 458. Springer Science & Business Media

2. Friedman LF (2014) Ibm’s watson supercomputer may soon be the best doctor in the world.
Bus Insid, Sci

3. Ambrosio L, Portillo C, Rodríguez-Blázquez C, Rodriguez-Violante M, Castrillo JCM, Ar-
illo VC, Garretto NS, Arakaki T, Dueñas MS, Álvarez M et al (2016) Living with chronic
illness scale: international validation of a new self-report measure in parkinson’s disease. npj
Parkinson’s Dis 2:16022

4. Statistics: release calendar, Mar 2019
5. Kalmady SV, Greiner R, Agrawal R, Shivakumar V, Narayanaswamy JC, BrownMRG, Green-

shaw AJ, Dursun SM, Venkatasubramanian G (2019) Towards artificial intelligence in men-
tal health by improving schizophrenia prediction with multiple brain parcellation ensemble-
learning. Npj Schizophr 5(1):2

6. Spasov S, Passamonti L, Duggento A, Lio P, Toschi N, Neuroimaging Initiative Alzheimer’s
Disease et al (2019) A parameter-efficient deep learning approach to predict conversion from
mild cognitive impairment to alzheimer’s disease. NeuroImage 189:276–287

7. Liu Z, Yao C, Hang Y, Taihua W (2019) Deep reinforcement learning with its application for
lung cancer detection in medical internet of things. Futur Gener Comput Syst

8. Mostafa SA, Mustapha A, Mohammed MA, Hamed RI, Arunkumar N, Ghani MKA, Jaber
MM, Khaleefah SH (2019) Examining multiple feature evaluation and classification methods
for improving the diagnosis of parkinson’s disease. Cogn Syst Res 54:90–99

9. Ting FF, Tan YJ, Sim KS (2019) Convolutional neural network improvement for breast cancer
classification. Expert Syst Appl 120:103–115

10. Brunetti A, Carnimeo L, Trotta GF, Bevilacqua V (2019) Computer-assisted frameworks for
classification of liver, breast and blood neoplasias via neural networks: a survey based on
medical images. Neurocomputing 335:274–298

11. Choudhury A, Gupta D (2019) A survey on medical diagnosis of diabetes using machine
learning techniques. In: Recent developments in machine learning and data analytics. Springer,
pp 67–78

12. Das H, Naik B, Behera HS (2018) Classification of diabetes mellitus disease (dmd): a data
mining (dm) approach. In: Progress in computing, analytics and networking, pp 539–549.
Springer

13. Ndaba M, Pillay AW, Ezugwu AE (2018) An improved generalized regression neural network
for type ii diabetes classification. In: International conference on computational Science and
its applications. Springer, pp 659–671

Salp Chain-Based Optimization of Support Vector … 31

14. HaqueMR, IslamMM, IqbalH,RezaMS,HasanMK(2018) Performance evaluation of random
forests and artificial neural networks for the classification of liver disorder. In: 2018 interna-
tional conference on computer, communication, chemical, material and electronic engineering
(IC4ME2), pp 1–5. IEEE

15. Kumar S, Katyal S (2018) Effective analysis and diagnosis of liver disorder by data mining.
In: 2018 international conference on inventive research in computing applications (ICIRCA),
pp 1047–1051. IEEE

16. AlAgha AS, Faris H, Hammo BH, A-Zoubi AM (2018) Identifying β-thalassemia carriers
using a data mining approach: The case of the gaza strip, palestine. Artif Intell Med 88:70–83

17. Das V, Dandapat S, Bora PK (2019) A novel diagnostic information based framework for
super-resolution of retinal fundus images. Comput Med Imaging Graph

18. Goyal H, Khandelwal D, Aggarwal A, Bhardwaj P (2018) Medical diagnosis using machine
learning. Bhagwan Parshuram Inst Technol 7

19. Samant P, Agarwal R (2018) Machine learning techniques for medical diagnosis of diabetes
using iris images. Comput Methods Programs Biomed 157:121–128

20. Saqlain SM, Sher M, Shah FA, Khan I, Ashraf MU, Awais M, Ghani A (2018) Fisher score
and matthews correlation coefficient-based feature subset selection for heart disease diagnosis
using support vector machines. Knowl Inf Syst 1–29

21. Sidey-Gibbons JAM, Sidey-Gibbons JAM (2019) Machine learning in medicine: a practical
introduction. BMC Med Res Methodol 19(1):64

22. Zheng X, Lv G, Zhang Y, Lv X, Gao Z, Tang J, Mo J (2019) Rapid and non-invasive screening
of high renin hypertension using raman spectroscopy and different classification algorithms.
Spectrochim Acta Part A: Mol Biomol Spectrosc 215:244–248

23. Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw
10(5):988–999

24. Byvatov E, Schneider G (2003) Support vector machine applications in bioinformatics. Appl
Bioinform 2(2):67–77

25. Staples M, Chan L, Si D, Johnson K, Whyte C, Cao R (2019) Artificial intelligence for bioin-
formatics: Applications in protein folding prediction. bioRxiv, pp 561027

26. Burges Christopher JC (1998) A tutorial on support vector machines for pattern recognition.
Data Min Knowl Discov 2(2):121–167

27. Wu H, Qing H, Daqing W, Lifu G (2018) A cnn-svm combined model for pattern recognition
of knee motion using mechanomyography signals. J Electromyogr Kinesiol 42:136–142

28. Al-Zoubi Ala M, Faris Hossam, Hassonah Mohammad A et al (2018) Evolving support vector
machines using whale optimization algorithm for spam profiles detection on online social
networks in different lingual contexts. Knowl-Based Syst 153:91–104

29. Aljarah I, Al-Zoubi AM, Faris H, Hassonah MA, Mirjalili S, Saadeh H (2018) Simultaneous
feature selection and support vector machine optimization using the grasshopper optimization
algorithm. Cogn Comput 1–18

30. Sadiq AS, Faris H, Al-Zoubi AM, Mirjalili S, Ghafoor KZ (2019) Fraud detection model
based on multi-verse features extraction approach for smart city applications. In: Smart cities
cybersecurity and privacy. Elsevier, pp 241–251

31. Naik VA, Desai AA (2018) Online handwritten gujarati numeral recognition using support
vector machine

32. NiuX-X, SuenCY (2012)Anovel hybrid cnn-svm classifier for recognizing handwritten digits.
Pattern Recognit 45(4):1318–1325

33. Xuelian D, Yuqing L, Jian W, Jilian Z (2019) Feature selection for text classification: a review.
Multimed Tools Appl 78(3):3797–3816

34. Mohammad AH, Alwada’n T, Al-Momani O (2018) Arabic text categorization using support
vector machine, naïve bayes and neural network. GSTF J Comput (JoC) 5(1):

35. Chandra MA, Bedi SS (2018) Survey on svm and their application in image classification. Int
J Inf Technol 1–11

36. Sudharshan PJ, Petitjean C, Spanhol F, Oliveira LE, Heutte L, Honeine P (2019) Multiple
instance learning for histopathological breast cancer image classification. Expert Syst Appl
117:103–111

32 A. M. Al-Zoubi et al.

37. Faris H, Hassonah MA, Al-Zoubi AM, Mirjalili S, Aljarah I (2018) A multi-verse optimizer
approach for feature selection and optimizing svm parameters based on a robust system archi-
tecture. Neural Comput Appl 30(8):2355–2369

38. Phan AV, Nguyen ML, Bui LT (2017) Feature weighting and svm parameters optimization
based on genetic algorithms for classification problems. Appl Intell 46(2):455–469

39. Lameski P, Zdravevski E, Mingov R, Kulakov A (2015) Svm parameter tuning with grid search
and its impact on reduction of model over-fitting. In: Rough sets, fuzzy sets, data mining, and
granular computing. Springer, pp 464–474

40. Staelin C (2003) Parameter selection for support vector machines. Hewlett-Packard Company,
Tech. Rep. HPL-2002-354R1

41. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm
algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–
191

42. Lichman M (2013) UCI machine learning repository
43. WettschereckD,AhaDW,Mohri T (1997) A review and empirical evaluation of featureweight-

ing methods for a class of lazy learning algorithms. Artif Intell Rev 11(1–5):273–314
44. Heidari AA, Pahlavani P (2017) An efficient modified grey wolf optimizer with lévy flight for

optimization tasks. Appl Soft Comput 60:115–134
45. Mirjalili S (2016)Dragonfly algorithm: a newmeta-heuristic optimization technique for solving

single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–
1073

46. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61
47. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimiza-

tion: algorithm and applications. Futur Gener Comput Syst 97:849–872
48. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic

paradigm. Knowl-Based Syst 89:228–249
49. Hadi E, Ali S, Ardeshir B, Mohd H (2012) Water cycle algorithm-a novel metaheuristic opti-

mization method for solving constrained engineering optimization problems. Comput & Struct
110:151–166

50. Mirjalili S,Mirjalili SM,HatamlouA (2016)Multi-verse optimizer: a nature-inspired algorithm
for global optimization. Neural Comput Appl 27(2):495–513

51. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98
52. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67
53. Heidari AA, Abbaspour RA, Jordehi AR (2017) An efficient chaotic water cycle algorithm for

optimization tasks. Neural Comput Appl 28(1):57–85
54. Yang X-S (2010) Nature-inspired metaheuristic algorithms. Luniver press,
55. Guo XC, Yang JH, Wu CG, Wang CY, Liang YC (2008) A novel ls-svms hyper-parameter

selection based on particle swarm optimization. Neurocomputing 71(16–18):3211–3215
56. Chunhong Z, Licheng J (2004) Automatic parameters selection for svm based on ga. In: Fifth

world congress on intelligent control and automation (IEEE Cat. No. 04EX788), vol 2, pp
1869–1872. IEEE

57. NandaMA, SeminarKB, SolahudinM,MadduA,NandikaD (2018) Implementation of genetic
algorithm (ga) for hyperparameter optimization in a termite detection system. In: Proceedings
of the 2nd international conference on graphics and signal processing. ACM, pp 100–104

58. RenY,BaiG (2010)Determination of optimal svmparameters by using ga/pso. JCP 5(8):1160–
1168

59. Jin Q, Chi M, Zhang Y, Wang H, Zhang H, Cai W (2018) A novel bacterial algorithm for
parameter optimization of support vector machine. In: 2018 37th Chinese control conference
(CCC), pp 3252–3257. IEEE

60. SayedGI, SolimanM,HassanienAE (2019) Parameters optimization of support vectormachine
based on the optimal foraging theory. In: Machine learning paradigms: theory and application.
Springer, pp 309–326

Salp Chain-Based Optimization of Support Vector … 33

61. Mirjalili S (2016) Sca: a sine cosine algorithm for solving optimization problems.Knowl-Based
Syst 96:120–133

62. Ilhan A, Mehmet K, Erhan A (2011) A multi-objective artificial immune algorithm for param-
eter optimization in support vector machine. Appl Soft Comput 11(1):120–129

63. Godínez-Bautista A, Padierna LC, Rojas-DomínguezA, PugaH, CarpioM (2018) Bio-inspired
metaheuristics for hyper-parameter tuning of support vectormachine classifiers. In: Fuzzy logic
augmentation of neural and optimization algorithms: theoretical aspects and real applications.
Springer, pp 115–130

64. Mafarja M, Aljarah I, Faris H, Hammouri AI, Al-Zoubi AM, Mirjalili S (2019) Binary
grasshopper optimisation algorithm approaches for feature selection problems. Expert Syst
Appl 117:267–286

65. Mafarja M, Aljarah I, Heidari AA, Faris H, Fournier-Viger P, Li X, Mirjalili S (2018) Binary
dragonfly optimization for feature selection using time-varying transfer functions. Knowl-
Based Syst 161:185–204

66. Mafarja M, Aljarah I, Heidari AA, Hammouri AI, Faris H, Al-Zoubi AM, Mirjalili S (2018)
Evolutionary population dynamics and grasshopper optimization approaches for feature selec-
tion problems. Knowl-Based Syst 145:25–45

67. Mafarja M, Heidari AA, Faris H, Mirjalili S, Aljarah I (2020) Dragonfly algorithm: theory,
literature review, and application in feature selection. In: Nature-Inspired Optimizers. Springer,
pp 47–67

68. Chaoshun Li, Xueli An, Ruhai Li (2015) A chaos embedded gsa-svm hybrid system for clas-
sification. Neural Computing and Applications 26(3):713–721

69. Huang C-L, Dun J-F (2008) A distributed pso-svm hybrid system with feature selection and
parameter optimization. Appl Soft Comput 8(4):1381–1391

70. Liu Y, Wang G, Chen H, Dong H, Zhu X, Wang S (2011) An improved particle swarm opti-
mization for feature selection. J Bionic Eng 8(2):191–200

71. Bouraoui A, Jamoussi S, BenAyed Y (2017) A multi-objective genetic algorithm for simulta-
neous model and feature selection for support vector machines. Artif Intell Rev 1–21

72. Huang C-L, Wang C-J (2006) A ga-based feature selection and parameters optimizationfor
support vector machines. Expert Syst Appl 31(2):231–240

73. Sarafrazi S, Nezamabadi-pour H (2013) Facing the classification of binary problems with a
gsa-svm hybrid system. Math Comput Model 57(1–2):270–278

74. Aladeemy M, Tutun S, Khasawneh MT (2017) A new hybrid approach for feature selection
and support vector machine model selection based on self-adaptive cohort intelligence. Expert
Syst Appl 88:118–131

75. Costa VO, Rodrigues CR (2018) Hierarchical ant colony for simultaneous classifier selection
and hyperparameter optimization. In: 2018 IEEE congress on evolutionary computation (CEC),
pp 1–8. IEEE

76. Huang C-L (2009) Aco-based hybrid classification system with feature subset selection and
model parameters optimization. Neurocomputing 73(1–3):438–448

77. Gildea D, Naim I (2013) CSC 446 notes: Lecture 7
78. Faris H, Mirjalili S, Aljarah I, Mafarja M, Heidari AA (2020) Salp swarm algorithm: the-

ory, literature review, and application in extreme learning machines. Springer International
Publishing, Cham, pp 185–199

79. Aljarah I, Mafarja M, Heidari AA, Faris H, Zhang Y, Mirjalili S (2018) Asynchronous accel-
erating multi-leader salp chains for feature selection. Appl Soft Comput 71:964–979

80. Faris H, Mafarja MM, Heidari AA, Aljarah I, Al-Zoubi AM, Mirjalili S, Fujita H (2018) An
efficient binary salp swarm algorithm with crossover scheme for feature selection problems.
Knowl-Based Syst 154:43–67

81. Zhang Q, Chen H, Heidari AA, Zhao X, Xu Y, Wang P, Li Y, Li C (2019) Chaos-induced and
mutation-driven schemes boosting salp chains-inspired optimizers. IEEE Access 7:31243–
31261

82. Lichman M et al (2013) Uci machine learning repository

34 A. M. Al-Zoubi et al.

83. Faris H, Al-Zoubi AM, Heidari AA, Aljarah I, Mafarja M, Hassonah MA, Fujita H (2019) An
intelligent system for spam detection and identification of the most relevant features based on
evolutionary random weight networks. Inf Fusion 48:67–83

84. Wolpert DH, Macready WG et al (1997) No free lunch theorems for optimization. IEEE Trans
Evol Comput 1(1):67–82

Support Vector Machine: Applications
and Improvements Using Evolutionary
Algorithms

Seyed Hamed Hashemi Mehne and Seyedali Mirjalili

Abstract A description of the theory and the mathematical base of support vector
machines with a survey on its applications is first presented in this chapter. Then, a
method for obtaining nonlinear kernel of support vector machines is proposed. The
proposed method uses the gray wolf optimizer for solving the corresponding nonlin-
ear optimization problem. A sensitivity analysis is also performed on the parameter
of the model to tune the resulting classifier. The method has been applied to a set
of experimental data for diabetes mellitus diagnosis. Results show that the method
leads to a classifier which distinguished healthy and patient cases with 87.5% of
accuracy.

Keywords Machine learning · Support vector machine · Optimization ·
Meta-heuristics · Evolutionary algorithms · Benchmark · Artificial intelligence

1 Introduction

Supervised learning is a branch in the field of machine learning dealing with a
given set of labeled data. This data that consist of input and outputs is used to
train the desired model. Supervised learning has itself two types of classification
and regression algorithms. A classification algorithm attempts to organize the data
or observations into distinct categories in order to locate new data in future easily.
Therefore, it consists of two main parts: model training and prediction. Support
vector machine (SVM) is a well-known class of algorithms for data classification.
Based on the literature, SVMs have been used in many different practical problems
effectively.

S. H. H. Mehne
Aerospace Research Institute, 1465774111 Tehran, Iran
e-mail: hmehne@ari.ac.ir

S. Mirjalili (B)
Torrens University Australia, Brisbane, QLD 4006, Australia
e-mail: ali.mirjalili@gmail.com

Griffith University, Brisbane, QLD 4111, Australia

© Springer Nature Singapore Pte Ltd. 2020
S. Mirjalili et al. (eds.), Evolutionary Machine Learning Techniques,
Algorithms for Intelligent Systems, https://doi.org/10.1007/978-981-32-9990-0_3

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-32-9990-0_3&domain=pdf
mailto:hmehne@ari.ac.ir
mailto:ali.mirjalili@gmail.com
https://doi.org/10.1007/978-981-32-9990-0_3

36 S. H. H. Mehne and S. Mirjalili

In this chapter, a literature review of support vector machines, their theory, and ap-
plications are given at the first for motivations. The main focus is on the optimization
problem that arises in determining a typical SVM. As this problem is usually non-
linear and with a large number dimensions, a wide range of optimization algorithms
has been reported to solve it in literature. Meta-heuristic evolutionary methods such
as ant colony [33], particle swarm optimization [32], and whale optimization method
[2, 36] have been applied to solve the optimization problem or in model parameter
tuning.

In thiswork, the graywolf optimizer (GWO)has been adopted to solve the problem
of SVM accompanied with a radial basis kernel. The GWO is a nature-inspired
evolutionary algorithm for optimization and has been developed based on the social
life of gray wolfs. As the method is originally for unconstrained problems, in the
case of SVM, the related constraint is added to the objective function as a penalty.
In order to make an evaluation, the method has been applied to a set of experimental
data for diabetes. Results show that the method solves the SVM problem and finds
the classifier efficiently. Moreover, a parameter analysis has been also performed to
find the optimum value of the parameter. The method with an optimum parameter
was able to predict and distinguish the healthy and patient cases based on the features
with 87.5% correctness.

There are other implementations of GWO in SVM classifications in the literature.
As an instance, GWO has been used in [8] for optimal setting of SVM parameters in
order to increase the accuracy of the model. In [22], an improved GWO was intro-
duced for feature selection by separating helpful data from the database. Optimizing
the SVM parameters was also the goal of GWO utilization in [27]. The method is
examined for image classification in the field of water quality management.

The main difference between the above-mentioned applications of GWO and
the present method of this chapter is that they employed the GWO for parameter
optimization and feature selection, while we use it for solving the main problem
of margin maximization which is of higher dimension. For parameter optimization,
we use a simple parameter estimation method due to the low number of decision
variables. Therefore, the proposed method has lower computational complexity in
the phase of parameter tuning.

The rest of this chapter is organized as follows: In Sect. 2, the theory and ap-
plication of SVMs are reviewed and explained. The method of predictive model
construction is explained in Sect. 3. The implementation of the method on exper-
imental data and model analysis is discussed in Sect. 4. Finally, some concluding
remarks and future work suggestions are given in Sect. 5.

2 Support Vector Machine

In this section, applications of the support vector machines in different fields of
research will be reviewed. Then, the mathematical base and theoretical notes will be
explained.

Support Vector Machine: Applications and Improvements … 37

2.1 Applications of SVM

• Genetics: Generating gene classifiers that assign genes to special labels based on
a set of given data is a principal task in genetics. Statistical methods, fuzzy logic,
and artificial neural networks are traditional tools in gene classification. Support
vector machines are also interesting for this type of classification and demonstrate
successful results especially for large data sets. For example, in [7], SVMapproach
to microarray gene classification problem has been presented. The SVM model
has been developed using a set of gene expression samples. Simulations show
that the resulting classifier has the ability to assign new samples to certain cancer
diseases. A mixed kernel SVM has been also proposed in [36] for prediction
of colorectal cancer. Results show that the classifier discriminates healthy and
patient samples with improved accuracy in the presence of redundant genes and
imbalanced data. Another recent research in this field was reported in [4], where
an improved penalized SVD for identification of informative genes and pathways
among cancer microarray data has been proposed.

• Environmental hazards: Natural hazards such as earthquakes, volcanic eruptions,
wildfire, floods, and droughts cause the death of livings, infrastructures and prop-
erty damage, and environmental degradation. Therefore, prediction and warning
of such hazards and identifying the potential of disasters will reduce corresponding
undesirable effects.
Technological enhancements such as remote sensing, geographic information sys-
tems, and high-performance computing alongside with statistical methods, frac-
tals, and artificial intelligence increase the capability of prediction.
In recent years, machine learning tools such as vector support machine have been
employed to drive predictive models for natural disasters. For example, SVM was
utilized to assign the probability of wildfire to a certain region in [9]. This results in
amapwith four levels of fire ignition potentials helpingmore effective surveillance
of human life and natural resources. Development of a drought forecasting model
has been also reported in [6]. This model is based on five meteorological sites in
eastern Australia using SVM.

• Pathological brain detection: Magnetic resonance imaging (MRI) is the common
source of data in pathological brain detection. The traditional human-basedmethod
of interpretation of brain images is time-consuming, costly, and unreliable. There-
fore, computer-basedmethods have been proposed to automate the process of clas-
sification these images as healthy or pathological. SVMhas been also implemented
for this type of classification. For example, in [30], special versions of SVM were
proposed as a classifier for brain images with more than 99% accuracy. In [34], the
generalized eigenvalue proximal SVM has been utilized as a binary classifier to
develop an automatic system to determine abnormal and normal brains. Diagnosis
of the depressive disorder based on MRI and brain networks reported in [21] is
another example of using SVM classifier. SVM has been also used in [12] for
early diagnosis of Alzheimer’s disease. The method is able to categorize samples
as Alzheimer’s disease, mild cognitive impairment, and elderly normal control.

38 S. H. H. Mehne and S. Mirjalili

• Solar radiation prediction: Study of solar radiation is a major prerequisite task in
the design and installation of photovoltaic and thermal electrical power stations.
In order to reduce the cost of direct measurement, predictive models have been
developed to estimate solar radiation from meteorological data. SVM has been
used recently as a reliable tool in generating such accurate predictive models. For
example, in [20], SVM has been utilized to predict the monthly mean horizontal
global solar radiation based on sunshine duration and maximum–minimum am-
bient temperature as inputs. Reported in [19], the combination of support vector
machine and wavelet transform algorithm provided a model to predict daily and
monthly horizontal global solar radiation. The results indicate more than 88% ac-
curacy and functional excellence with respect to other models. Another notable
work in this field is [3].

• Text categorization: Assigning predefined labels or categories to text according to
its content is text categorization or text classification. Among widespread appli-
cations of text categorization, one can mention web news organization, academic
paper classification, spam filtering, and language detection.
Rule-based methods, artificial intelligence, and machine learning systems are the
most commonly used approaches to text categorization. Due to the linearly sepa-
rable nature of text categorization, linear SVM has been utilized. It usually offers
accurate results with a small amount of training data. Some examples of employing
SVM for text classification are [2, 10, 29].

• Miscellaneous applications: In addition to the above-mentioned application of sup-
port vector machines, there are many real-world practical applications in literature
such as underwater acoustic target classification [24], business and economy [16,
31, 32], health monitoring of mechanical systems [1, 5, 14, 26], automatic cloud
classification [28], facial emotion recognition [35], electrical power and electricity
[11, 15, 23], pan evaporation modeling [13], and crop classification [37].

2.2 How Does SVM Work?

As mentioned before, SVM algorithms generate learning models for automatic data
classification based on a set of given data. To start, let us assume the problem of
separating a set of data into two classes. As shown in Fig. 1 in a two-dimensional
example, to separate circles from squares, different straight lines may be drawn.
Here, the inputs are x1 and x2, the coordinates of a point while its shape (circle or
square) is the output or class label. H1 and H2 are straight lines or more general
hyperplanes that refer to linear classification. If one on these hyperplanes is selected
for the classifier model, then when a new data received, the decision on its shape
depends on its position relative to the hyperplane.

Instead of linear classification, one may use nonlinear separator when data cannot
be separated linearly. An example of a two-dimensional nonlinear separator has
been shown in Fig. 2. Decision between linear or nonlinear classification depends on
distribution of samples in the input data.

Support Vector Machine: Applications and Improvements … 39

Fig. 1 An example of 2d
linear data classification

x1

x2
H1 H2

Fig. 2 An example of 2d
data nonlinear classification

x1

x2

2.2.1 Linear SVM

As it was discussed and visualized in Fig. 1, there are many different separator lines
for an individual data set of training. In support vector machine, the aim is to find the
best of them. For further description, let us consider the following set of data with
N samples.

D = {(x1, y1), (x2, y2), · · · (xN , yN)} (1)

where in a sample (xi , yi), xi is the input vector in R
q and yi is the corresponding

output. In this general formulation of q-dimensional classification problem, the hy-
perplanes are subspaces of dimension q − 1 like straight lines in two-dimensional
space.

To make a geometrical sense, let us consider the problem with inputs in R
2 as

given in Fig. 3. Here, there are two distinguished categories and then yi ∈ {−1, 1}.
Linear SVM is seeking for hyperplanes with a maximum possible margin like dash
lines in Fig. 3. Vectors are allowed to appear on hyperplanes and they are called
support vectors.

40 S. H. H. Mehne and S. Mirjalili

Fig. 3 An example of 2d
data nonlinear classification

x1

x2

Support Vectors

Margin

Ifw is the normal vector to these hyperplanes, the equations of themare as follows:

w.x + b = 1 (2)

w.x + b = −1 (3)

Therefore, any point above or on the first hyperplane belongs to the class with label
1 and any point below or on the second hyperplane belongs to the class label −1.
In general, the margin between such two parallel separating hyperplanes is 2

‖w‖ .
Now, maximizing the margin is equivalent to minimizing ‖w‖ with the following
constraints guarantee the separation of samples:

w.xi + b ≥ 1, if yi = 1 (4)

w.xi + b ≤ −1, if yi = −1 (5)

The above inequalities may be also combined to the following

yi (w.xi + b) ≥ 1, for all i = 1, 2, . . . , N (6)

In summary, the problem of finding maximum margin hyperplanes will be written
as:

Min ‖w‖ (7)

subject to:

yi (w.xi + b) ≥ 1, i = 1, 2, . . . , N . (8)

Here,w is the normal vector of hyperplanes and is the decision variable of the above
optimization problem with b. Therefore, the problem has q + 1 decision variables
and N constraints. As soon as the above problem is solved, the classifier will be
determined as x �→ sign(w.x − b) which maps a new data to a class.

Support Vector Machine: Applications and Improvements … 41

In order to convert the problem to one with easier constraints, the Lagrangian form of
(7)–(8) is usually considered. Ifλi is non-negativeLagrangemultiplier corresponding
to i th constraints of (8), then the reformulated form of (7)–(8) is as follows:

Min LP = 1

2
‖w‖2 −

N∑

i=1

λi yi (w.xi + b) +
N∑

i=1

λi (9)

subject to:

λi ≥ 0, i = 1, 2, . . . , N . (10)

Because the necessary condition of optimum for (9) is to vanish its gradient, the
following conditions hold:

∂LP

∂w
= w −

N∑

i=1

λi yi xi = 0 (11)

∂LP

∂b
=

N∑

i=1

λi yi = 0 (12)

Therefore, the solution will satisfy in

w =
N∑

i=1

λi yi xi (13)

N∑

i=1

λi yi = 0 (14)

Substituting (13)–(14) in (9) leads to the dual form of the problem as follows:

Max LD =
N∑

i=1

λi − 1

2

N∑

i=1

N∑

j=1

λiλi yi y j (xi .x j) (15)

subject to:
N∑

i=1

λi yi = 0, i = 1, 2, . . . , N , (16)

λi ≥ 0, i = 1, 2, . . . , N . (17)

The above dual problem is a convex optimization problem and then has a unique
solution namely {λ∗

1, λ
∗
2, . . . , λ

∗
N }. Based on the nature of duality, nonzero λ∗

i s corre-
spond to equality constraints, i.e., the support vectors. Therefore, since a number of
support vectors are usually less than the inner data points, most of λ∗

i s in the optimal
solution are zero.

42 S. H. H. Mehne and S. Mirjalili

As soon as the solution is found, the original optimal values ofwwill be calculated
as the following linear combination of input data xi with the product of outputs yi
and λ∗

i s as weight coefficients:

w∗ =
N∑

i=1

λ∗
i yixi (18)

The bias term b∗ will be also computed from the following relation, where i0 is the
index of a support vector:

yi0(w
∗xi0 + b∗) = 1 (19)

The classifier function that determines the related category of new data such as x
has also the following form:

f (x) = sign(
N∑

i=1

λ∗
i yixix + b∗) (20)

2.3 Interpretation of Inner Product

One of the benefits in dealing with the dual problem is the appearance of the inner
products of training data, i.e., xi .x j in the formulation of (15) which plays a key rule
in nonlinear SVMs. This dot product has also a description of similarity: if xi and
x j are similar vectors then they are parallel and in the case of unit length, their inner
product equals to 1. On the other hand, if they are completely dissimilar, they are
perpendicular and xi .x j = 0. Therefore, xi .x j will measure the similarity of xi and
x j .

Now, let us assume that xi and x j are completely dissimilar, then they have not
contributed to LD , based on (15).When xi and x j are similar, then there are two cases:
if yi = y j , then λiλi yi y j (xi .x j) is positive when λi , λ j > 0 and this has negative
effect on the objective function. Therefore, in this case, it is better that at least one
of the λi and λ j be zero. This forces to form w such that they are in the same class.
If yi 	= y j , then the positive effect on objective is achieved when λi , λ j > 0 which
means that the optimizing process forces to put them in different classes.

2.3.1 Nonlinear SVM

In the last section, the linear SVM has been discussed. In linear SVM, the classes
are separated with hyperplanes or in the special case of two-dimensional, straight
lines. However, many real-world examples may be addressed where experimental
data cannot be divided by straight lines. As it is shown in Fig. 4, separating squares

Support Vector Machine: Applications and Improvements … 43

Fig. 4 A data sample which
is not separated linearly

x1

x2

Fig. 5 Transformation of
data into a linearly separable
space

Transformation

and circles requires a closed curve rather than straight lines. For such cases that the
relation between classes is complex, the nonlinear SVM has been introduced.

In the case of nonlinear data distribution, a mapping is used to the input data to
transform it to a linearly separable data as illustrated in Fig. 5. This transformation
is usually called the features mapping which maps x to φ(x). In this case, the inner
product xixj in the objective function (15) is substituted by K (xi, xj) = φ(xi)φ(xj).
In more general, kernel function is defined based on the input data patterns. Some of
the important kernels are given in Table1.

Table 1 Examples of kernel functions

Pattern type Kernel function Parameters

Linear xz

Polynomial (homogeneous) (xz)p p is the tuning parameter

Polynomial (inhomogeneous) (xz + c)p p and c are tuning parameters

Radial basis function e(− ‖x−z‖2
2σ2

)
σ is the tuning parameter

Sigmoid tanh(κxz + c) κ > 0 and c < 0 are restricted
parameters

44 S. H. H. Mehne and S. Mirjalili

In the case of using kernel function, the corresponding classifier function which
has been given for linear case in (20) will be expressed as follows:

f (x) = sign(
N∑

i=1

λ∗
i yi K (xix) + b∗) (21)

3 Method’s Description

In this section, the proposed method for SVM based on radial basis kernel is present-
ed. In this type of kernel function, there is a parameter σ which should be determined
in an optimal way. Therefore, in this case, we faced two optimization problems, one
for choosing the optimal value of parameters and second for finding the correspond-
ing (w, b). We call them outer (for parameters) and inner optimization problem. As
the outer one has only one decision variable, it is simpler than the outer with N
variables. Therefore, for the outer optimization problem, a simple method of param-
eter analysis is used and for the inner one which is more complex, a nature-inspired
meta-heuristic method called gray wolf optimizer (GFO) is implemented.

Fig. 6 indicates the flowchart of the proposed method. In the first step, the input
data is divided into training and testing data that contain 80% and 20% of the input
data, respectively. Then, an initial value for σ is generated to construct the abstract
form of the kernel. In the next step, the gray wolf optimizer solves the corresponding
dual problem presented by (15)–(17). From the optimal solution, the classifier is
formed. Then, by applying the test data into the resulting classifier, the model is
evaluated. The evaluation phase is to compare the output of classifier with the output
of the test data. The procedure is repeated until the desired accuracy occurs.

3.1 Gray Wolf Optimizer

Gray wolf optimizer is a nature-inspired evolutionary method for optimization algo-
rithmproposed byMirjalili et al. in 2014 [17]. This algorithm simulates the leadership
hierarchy and hunting mechanism of gray wolves in nature for optimization prob-
lems. The method has been used to solve different challenging problems in various
application areas successfully. As a relatively complete reference on this method, its
applications, and literature review, one may refer the reader to [18].

The method starts with a population of gray wolfs as search agents. Then, in each
iteration, the population is updated based on fitness values in a random way. The
algorithm of the method for minimizing a function g(x) is as follows:

Support Vector Machine: Applications and Improvements … 45

Input data

Kernel
Construction

Solving Dual
Problem

Building the
Classifier

Parameter Generation

GWO

Evaluating
the Model
Accuracy

Is accuracy
accept-
able?

Stop

•

•

Testing Data

Training Data

yes

no

Fig. 6 Flowchart of construction and evaluating of the proposed SVM

46 S. H. H. Mehne and S. Mirjalili

Gray Wolf Optimizer algorithm
Start: Choose an initial population of search agents or gray wolfs {Xi : i = 1, 2, · · · , n},

choose maximum number of iteration K . Let t = 1.
Step 1: Calculate the fitness value of each search agent e.i. {g(Xi) : i = 1, 2, · · · , n}.
Step 2: Determine the best, the second best and the third best search agent as follows:

Xα = argmin{g(Xi) : i = 1, 2, · · · , n}
Xβ = argmin{g(Xi) : i = 1, 2, · · · , n, i 	= α}
Xδ = argmin{g(Xi) : i = 1, 2, · · · , n, i 	= α, β}

Step 3: Let i = 1 and a = 2(1 − t
K).

Step 4: Choose six normal random vector r1 j , r2 j , j = 1, 2, 3. Calculate the followings:
A j = a(2r1 j − 1), C j = 2r2 j , j = 1, 2, 3.
Dα = |C1.Xα − Xi |, Dβ = |C2.Xβ − Xi |, Dδ = |C3.Xδ − Xi |,
X1 = Xα − A1.Dα , X2 = Xβ − A2.Dβ , X3 = Xδ − A3.Dδ

Step 5: Update search agents by Xi = X1+X2+X3
3 .

Step 6: If i < n, let i = i + 1 and go to Step 4.
Step 7: If t < K , let t = t + 1 and go to Step 5.
Stop: Stop the algorithm with Xα as the solution.

4 Experimental Results

In this section, the proposed method is evaluated on a set of experimental data. The
input data set was obtained from [25]. It is related to the diagnosis of diabetesmellitus
and taken from a population in India. We used a portion of this data set with 120
samples including 96 samples for training and 24 samples for testing. There are eight
attributes in this data set which have been taken as features for training in our study
listed in Table2.

We consider two classes of patients or tested positive for diabetes and healthy or
tested negative for diabetes labeled respectively by 1 and −1. In the training data,
there are 36 member in class 1 while the class −1 has 33 member. In the test data,
there are, respectively, 8 and 16 cases in these classes. This data is used as input data
for the classification of cases as patient or healthy.

The GWO algorithm has been implemented of the dual problem with parameters
as given in Table3. It is evident that the GWO-based method show accurate results.

Table 2 Data features of the
experiment

Number of times pregnant

Plasma glucose concentration

Diastolic blood pressure (mm Hg)

Triceps skin fold thickness (mm)

2-Hour serum insulin (mu U/ml)

Body mass index (kg/m2)

Diabetes pedigree function

Age (years)

Support Vector Machine: Applications and Improvements … 47

Table 3 Parameters of GWO
and model

Parameter Value

Number of search agents 30

Maximum number of iterations 100

Number of runs for a single case 3

Allowed variables range [0, 5]

σ [0.1, 15]

Fig. 7 The negative of the
objective function in terms
of iterations

Itrations
0 10 20 30 40 50 60 70 80 90 100

O
bj

ec
tiv

e
fu

nc
tio

n

-40

-20

0

20

40

60

80

100

Because of the stochastic nature of the method, the program executed three times for
each single case. Then the best solution has been chosen as the optimum.

Since the GWO is developed for minimization, we had to minimize the negative
of the objective function instead of maximization the original objective function. For
example, Fig. 7 shows the curve of the negative value of objective function in terms
of iterations that indicates the high rate of convergence.

A parameter sensitivity analysis of σ has been also performed. In this analysis, the
values of σ changes from 0.1 to 15 and it was observed that the low accuracy occurs
with σ < 1 and this range is not suggested to use. The best solution has been obtained
for σ = 10.0 with the objective function equals to 33.04 and error in satisfying the
constraint is of order 10−4. In this optimum case, the accuracy of the method in the
correct prediction of the remaining 24 cases was 87.5%. Other suitable values of σ

leads to 79.2% and 83.3% correct prediction.
The curve in Fig. 8 demonstrates the percentage of correct prediction of themodels

in terms of the related value of σ . It is dedicated that the accuracy of the models rise
with the value of sigma up to σ = 10 and then it falls again. Therefore, the optimum
value is in this interval and may be estimated more precisely by a line search method.

48 S. H. H. Mehne and S. Mirjalili

Fig. 8 The accuracy of the
model in prediction in terms
of the parameter values

0 2 4 6 8 10 12 14 16

A
cc

ur
ac

y(
%

)

0

10

20

30

40

50

60

70

80

90

100

5 Conclusion and Remarks

A method for determining the nonlinear support vector machine was presented. The
method is based on using gray wolf optimization and parameter analysis. Results in
a set of experimental data show that the method is accurate and reliable. For further
investigation, using a line search algorithm such as the golden section method to
find the optimal value of the model parameter is advised. Moreover, the study of the
effect of other method parameters such as number of search agents, the maximum
number of iterations, and variable interval may be performed.

References

1. Abdelghafar S, Darwish A, Hassanien AE (2019) Cube satellite failure detection and recovery
using optimized support vector machine. In: Hassanien A, Tolba M, Shaalan K, Azar A (eds)
Proceedings of the international conference on Advanced Intelligent Systems and Informatics
2018. AISI (2018) Advances in Intelligent Systems and Computing, vol 845. Springer, Cham

2. Al-Zoubi AM, Faris H, Alqatawna J, Hassonah MA (2018) Evolving support vector machines
using Whale optimization algorithm for spam profiles detection on online social networks in
different lingual contexts. Knowl-Based Syst 153:91–104

3. Belaid S, Mellit A (2016) Prediction of daily and mean monthly global solar radiation using
support vector machine in an arid climate. Energ Convers Manage 118:105–118

4. Chan WH, Mohamad MS, Deris S, Zaki N, Kasim S, Omatu S, Corchado JM, Al Ashwal H
(2016) Identification of informative genes and pathways using an improved penalized support
vector machine with a weighting scheme. Comput Biol Med 77:102–115

5. Dalian Y, Yilun L, Songbai L, Xuejunc L, Liyong M (2015) Gear fault diagnosis based on
support vector machine optimized by artificial bee colony algorithm. Mech Mach Theory
90:219–229

Support Vector Machine: Applications and Improvements … 49

6. Deo RC, Kisi O, Singh VP (2017) Drought forecasting in eastern Australia using multivariate
adaptive regression spline, least square support vector machine andM5Tree model. Atmos Res
184:149–175

7. Devi Arockia Vanitha C, Devaraj D, Venkatesulu M (2015) Gene expression data classification
using support vector machine and mutual information-based gene selection. Proc Comput Sci
47:13–21

8. Elhariri E, El-Bendary N, Hassanien AE, Abraham A (2015) Grey wolf optimization for one-
against-one multi-class support vector vachines. In: 7th international conference of Soft Com-
puting and Pattern Recognition (SoCPaR), pp 7–12

9. Jaafari A, Pourghasemi HR (2019) Factors influencing regional-scale wildfire probability in
Iran: an application of random forest and support vector machine. In: Spatial modeling in GIS
and R for Earth and environmental sciences, pp 607–619

10. Joachims T (1998) Text categorization with support vector machines: learning with many
relevant features. In: Ndellec C, Rouveirol C (eds) Machine learning: ECML-98. ECML 1998.
Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence), vol 1398, pp
137–142

11. Kaytez F, Cengiz Taplamacioglu M, Camb E, Hardalac F (2015) Forecasting electricity con-
sumption: a comparison of regression analysis, neural networks and least squares support vector
machines. Int J Elec Power 67:431–438

12. Khedher L, Ramrez J, Grriz JM, Brahim A, Segovia F (2015) Early diagnosis of Alzheimers
disease based on partial least squares, principal component analysis and support vectormachine
using segmented MRI images. Neurocomputing 151:139–150

13. KisiO (2015) Pan evaporationmodeling using least square support vectormachine,multivariate
adaptive regression splines and M5 model tree. J Hydrol 528:312–320

14. Li Y, Xu M, Wei Y, Huang W (2016) A new rolling bearing fault diagnosis method based
on multiscale permutation entropy and improved support vector machine based binary tree.
Energy 67:80–94

15. Meng J, Luo G, Gao F (2016) Lithium polymer battery state-of-charge estimation based on
adaptive unscented Kalman filter and support vector machine. IEEE T Power Electr 31:2226–
2238

16. Min SH, Lee J, Han I (2006) Hybrid genetic algorithms and support vector machines for
bankruptcy prediction. Expert Syst Appl 31:652–660

17. Mirjalili SA, Mirjalili SM, Lewis A (2014) Grey Wolf optimizer. Adv Eng Softw 69:46–61
18. Mirjalili S, Aljarah I, Mafarja M, Heidari AA, Faris H (2020) Grey Wolf optimizer: theory,

literature review, and application in computational fluid dynamics problems. In: Mirjalili S et
al (eds) Nature-inspired optimizers, studies in computational intelligence, vol 811, pp 87–105

19. Mohammadi K, Shamshirband S, Tong CW, Arif M, Petkovic D, Ch S (2015) A new hybrid
support vector machinewavelet transform approach for estimation of horizontal global solar
radiation. Energ Convers Manage 92:162–171

20. Olatomiwa L,Mekhilef S, Shamshirband S,Mohammadi K, Petkovic K, Ch S (2015) A support
vector machinefirefly algorithm-based model for global solar radiation prediction. Sol Energy
115:632–644

21. Sacchet MD, Prasad G, Foland-Ross LC, Thompson PM, Gotlib IH (2015) Support vector
machine classification of major depressive disorder using diffusion-weighted neuroimaging
and graph theory. Front Psychiatry 6:1–10

22. Shankar K, Lakshmanaprabu SK, Gupta D,Maseleno A, de Albuquerque VHC (2018) Optimal
feature-basedmulti-kernel SVM approach for thyroid disease classification. J Supercomput
1573–0484:1–16

23. Sheng H, Xiao J (2015) Electric vehicle state of charge estimation: nonlinear correlation and
fuzzy support vector machine. J Power Sources 281:131–137

24. Sherin BM, Supriya MH (2015) Selection and parameter optimization of SVM kernel function
for underwater target classification. In: 2015 IEEE Underwater Technology (UT) Chennai,
India, pp 1–5

50 S. H. H. Mehne and S. Mirjalili

25. Smith JW, Everhart JE, Dickson WC, Knowler WC, Johannes RS (1988) Using the ADAP
learning algorithm to forecast the onset of diabetes mellitus. In: Proceedings of symposium on
computer applications and medical care, pp 261–265

26. Soualhi A,Medjaher K, Zerhouni N (2015) Bearing health monitoring based on Hilbert-Huang
transform, support vector machine and regression. IEEE T Instrum Meas 64:52–62

27. Sweidan AH, El-Bendary N, Hassanien AE, Hegazy OM, Mohamed AE (2015) Water quality
classification approach based on bio-inspired gray wolf optimization. In: 7th international
conference of Soft Computing and Pattern Recognition (SoCPaR), pp 1–6

28. TaravatA,Del Frate F,CornaroC,Vergari S (2015)Neural networks and support vectormachine
algorithms for automatic cloud classification of whole-sky ground-based images. IEEE Geosci
Remote S 12:666–670

29. Tong S, Koller D (2001) Support vector machine active learning with applications to text
classification. J Mach Learn Res 2:45–66

30. Wang S, Lu S, Dong Z, Yang J, YangM, Zhang Y (2016) Dual-tree complex wavelet transform
and twin support vector machine for pathological brain detection. Appl Sci 6:1–18

31. Wu CH, Tzeng GH, Goo YJ, Fang WC (2007) A real-valued genetic algorithm to optimize the
parameters of support vector machine for predicting bankruptcy. Expert Syst Appl 32:397–408

32. Yang XS, Deb S, Fong S (2011) Accelerated particle swarm optimization and support vector
machine for business optimization and applications. In: Fong S (eds) Networked Digital Tech-
nologies (NDT), Communications in computer and information science, vol 136. Springer,
Heidelberg

33. ZhangX, ChenX, He Z (2010) AnACO-based algorithm for parameter optimization of support
vector machines Expert Sys Appl 37:6618–6628

34. Zhang Y, Dong Z, Wang S, Ji G, Yang J (2015) Preclinical diagnosis of Magnetic Resonance
(MR) brain images via discrete wavelet packet transform with Tsallis entropy and Generalized
Eigenvalue Proximal Support Vector Machine (GEPSVM). Entropy 17:1795–1813

35. Zhang YD, Yang ZJ, Lu HM, Zhou XX, Phillips P, Li QM, Wang SH (2016) Facial emotion
recognition based on biorthogonalwavelet entropy, fuzzy support vectormachine, and stratified
cross validation. IEEE Access 4:8375–8385

36. Zhao D, Liu H, Zheng Y, He Y, Lu D, Lyu C (2019) Whale optimized mixed kernel function
of support vector machine for colorectal cancer diagnosis. J Biomed Inform 92:103124

37. ZhengB,Myint SW,Thenkabail PS,Aggarwal RM (2015)A support vectormachine to identify
irrigated crop types usingtime-series Landsat NDVI data. Int J Appl Earth Obs 34:103–112

Efficient Moth-Flame-Based
Neuroevolution Models

Ali Asghar Heidari, Yingyu Yin, Majdi Mafarja,
Seyed Mohammad Jafar Jalali, Jin Song Dong and Seyedali Mirjalili

Abstract This chapter proposes a new efficient moth-flame-embedded multilayer
perceptrons (MLP) neuroevolutionmodel to deal with classification problems.Moth-
flame optimizer (MFO) is one of the effective swarm-based metaheuristic meth-
ods inspired by the natural direction-finding behaviours of moth insects and their
well-known entrapment phenomena when they circulate the non-natural lights and
flames. MFO is capable of demonstrating a very promising performance in terms of
exploration and exploitation inclinations. The proposed MFO-MLP model is exten-

A. A. Heidari
School of Surveying and Geospatial Engineering, College of Engineering,
University of Tehran, Tehran, Iran
e-mail: as_heidari@ut.ac.ir; aliasgha@comp.nus.edu.sg; t0917038@u.nus.edu

A. A. Heidari · Y. Yin · J. S. Dong
Department of Computer Science, School of Computing,
National University of Singapore, Singapore, Singapore
e-mail: yinyingyu@gpnu.edu.cn; yinyingyu@comp.nus.edu.sg; t0917011@u.nus.edu

Y. Yin
Department of Electronics and Information Engineering, Guangdong Polytechnic Normal
University, Guangzhou 51665, China

M. Mafarja
Department of Computer Science, Faculty of Engineering and Technology,
Birzeit University, PoBox 14, Birzeit, Palestine
e-mail: mmafarja@birzeit.edu

S. M. J. Jalali
Intelligent Systems Research and Innovations (IISRI), Deakin University,
Waurn Ponds, VIC 3216, Australia
e-mail: sjalali@deakin.edu.au

J. S. Dong
Institute for Integrated and Intelligent Systems,
Griffith University, Nathan Brisbane, Australia
e-mail: dongjs@comp.nus.edu.sg; j.dong@griffith.edu.au

S. Mirjalili (B)
Torrens University Australia, Brisbane, QLD 4006, Australia
e-mail: ali.mirjalili@gmail.com

Griffith University, Brisbane, QLD 4111, Australia

© Springer Nature Singapore Pte Ltd. 2020
S. Mirjalili et al. (eds.), Evolutionary Machine Learning Techniques,
Algorithms for Intelligent Systems, https://doi.org/10.1007/978-981-32-9990-0_4

51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-32-9990-0_4&domain=pdf
mailto:as_heidari@ut.ac.ir
mailto:aliasgha@comp.nus.edu.sg; t0917038@u.nus.edu
mailto:yinyingyu@gpnu.edu.cn
mailto:yinyingyu@comp.nus.edu.sg; t0917011@u.nus.edu
mailto:mmafarja@birzeit.edu
mailto:sjalali@deakin.edu.au
mailto:dongjs@comp.nus.edu.sg
mailto:j.dong@griffith.edu.au
mailto:ali.mirjalili@gmail.com
https://doi.org/10.1007/978-981-32-9990-0_4

52 A. A. Heidari et al.

sively substantiated on 16 benchmark datasets, and the results are compared to well-
known methods such as particle swarm optimizer (PSO), population-based incre-
mental learning (PBIL), differential evolution (DE), and genetic algorithm (GA).
The obtained results indicate the efficacy of the MFO-embedded neuroevolution
model as a potential method in dealing with classification cases.

Keywords Moth-flame optimization · Optimization ·Multi-layer perceptron ·
Neural networks · Artificial intelligence ·Machine learning · Data science

1 Introduction

Artificial neural networks (ANNs) [1] are widely utilized for approximating func-
tions and learning from available patterns in datasets, especially in dealing with
classification tasks. Multilayer perceptron (MLPs) are the most well-regarded class
of ANNs in previous studies [2]. Referring to Kolmogorov’s theorem published in
1989 [3], it is interesting that a simpleMLPwith a single hidden layer has this ability
to estimate any kind of continuous problems. However, the results of MLPs depend
on the learning technique that we use to train the model [4]. Therefore, evolution-
ary algorithms (EA) can be embedded in training process of MLP-based models to
enhance the chance of LO avoidance and mitigate the stagnation problems.

In the last decade, swarm-based metaheuristic algorithms have fascinated many
researchers in different fields such as pattern recognition, computer vision, machine
learning, robotics, and operational research owing to their efficiency and flexibility
in tackling larger-scale, dynamic problems, time-consuming, and complex clustering
classification and learning tasks during a reasonable time [5]. In this regard and during
the contemporary digital era, the bio-inspired optimizer has progressively got promi-
nence in the aforementioned fields. Furthermore, the human is witnessing a rapid
information explosion, including spatial, temporal, uncertain, mobile, and spatio-
temporal data in every second and in every location. Often, the new problems are
NP-hard and high-dimensional. Hence, detecting the optimum in an n-dimensional
hyperspace gradually becomes a very difficult task if it is practical and possible to
detect, due to increasing complexity, and the tremendous and active scope of feasible
solutions. In this context, both enhanced and conventional optimizers are capable of
learning and disclosing a feasible solution in dealing with many computationally
complex tasks during a reasonable time [6].

Stochastic optimizers have gained increasing attention in these years [7]. The
reason is that these methods have shown promising results for many real-world
scenarios [8]. In addition, they are simple to understand, and any user can develop
a straightforward code for the targeted problem [9]. Some of the well-known and
recently modified methods are differential evolution (DE) [9] and particle swarm
optimization (PSO) [8].

Each of these algorithms has its own advantages and weaknesses. But, majority of
them may fall into local optima (LO) in dealing with some problems [10]. However,

Efficient Moth-Flame-Based Neuroevolution Models 53

this is expected, and it is convenient to modify an optimizer with regard to the nature
of different problems. Therefore, there aremany efforts to developmore evolutionary
training methods. Several works focused on the benefits of methods such as DE [11]
and biogeography-based optimizer (BBO) [12].

Among the recent methods, MFO has attracted a lot of researchers due to its
superior efficacy in realizing a lot of optimization problems [13]. The basic MFO
algorithm [14] is inspired by the navigation tactics of the insects called moths in
nature. They perform transverse orientation every time, which can be used to develop
a good model for solving optimization problems. This method has shown a satis-
factory performance on many unconstrained and constrained cases. Because of the
good performance of MFO, it has been applied to many cases. In this chapter, we
review some of the main contributions of MFO. Zhao et al. [15] used MFO within a
hybrid electricity consumption forecasting approach. Sayed et al. [16] developed an
intelligent mitosis detection technique by using neutrosophic concepts and theMFO.
Allam et al. [17] proposed using the MFO to detect the unknown parameters of the
three diode model. Li et al. [18] applied the MFO to optimize the parameters of the
least squares support vector machine (SVM). Ng ShinMei et al. [19] investigated the
performance of the MFO in tackling the optimal reactive power dispatch problem
(ORPD). Li et al. [20] built a diagnostic technique to predict the diagnosis of tuber-
culous pleural effusion. They used MFO to find the core parameters of SVM. Aziz
et al. [21] applied both the WOA and MFO to detect the optimal threshold values
of images. The second group of works tried to enhance the operators of the basic
MFO. Li et al. [22] used Levy flight to enhance the MFO (LMFO). Trivedi et al. [23]
used the MFO together with the Levy flight. Hassanien et al. [24] improved the basic
MFO to spontaneously sense the diseases of tomato. Wang et al. [25] developed a
newmodel based on the kernel extreme learning machine (KELM) and simultaneous
application of the chaos-induced MFO. Zhang et al. [26] proposed an evolutionary
FA-based method in which the spiral operator of MFO and the Levy flight are used,
and finally, they used their method for feature selection cases. Apinantanakon et
al. [27] evaluated the opposition-based learning technique to be embedded into the
MFO for speeding up the convergence rate. Li et al. [28] used multi-objective MFO
to improve the performance of the water resource cases. They also used opposition-
based learning within the optimization core. Khalilpourazari et al. [29] used both
MFO and the water cycle algorithm (WCA) to realize the optimal solutions of the
constrained problems. Elsakaan et al. [30] proposed an improved MFO (EMFO) for
dealing with the non-convex economic dispatch cases. Although some studies also
utilizedMFO to evolve their neural model [31, 32], we evaluate it in amore extensive
way to provide new insights and findings.

2 Structure of MFO

As a recent method, MFO mimics the glamorized celestial transverse bearings and
navigation manoeuvres of fancy moth creatures in sky [14]. The moths can consider

54 A. A. Heidari et al.

a star or moonshine to fix their direction and attain a straight trajectory for a long
flight in the night-time. In the case of observing non-natural lights, the moths will
be trapped in a tragic spiral-form trajectory around them. The central reason for
these illogical spiral motions is the intrinsic flight-to-light behaviours of moths. To
model these behaviours, the MFO considers an initial random swarm of moths as the
possible solutions for the problem. Similar to other SMA, a group of moths, which
have the role of search agents, can check and scan the surroundings (search space)
to discern a sequence of flames (the best locations).

In the basic MFO, the location of moths should be generated using

Mi = S(Mi , Fj) (1)

where Mi is the position vector of i-th moth, Fj denotes the j-th flame, and S is a
function to generate logarithmic spiral trajectories, which can be formulated as

S(Mi , Fj) = Die
bz cos(2π z) + Fj (2)

where b is set to 1 in the MFO, z is a random value in [−1, 1], and Di is the distance
among moths and flames determined by

Di =
∣
∣Fj − Mi

∣
∣ (3)

In the MFO, the number of flames (NF) should be adaptively reduced using

NF = round {N − t × (N − 1/T)} (4)

where t is the iteration, N is the total number of flames, and T is the maximum
iterations.

The succeeding clarifications summarize some of the exploration and exploitation
advantages of the MFO:

• The utilized spiral motions assist the MFO in exploiting the vicinity of superior
flames.

• Each moth is allocated to a flame, and then all flames are updated in each step.
This tactic can intensify the exploration tendency of the MFO, and it supports it
in the situation of LO entrapment.

• The MFO uses the fresh best agents attained so far as the flames. The manner
keeps the superior agents as team leaders for the rest of moths.

• The MFO implements an adaptive function to decrease the leaders (flames). This
technique is very constructive to recover a fine balance between exploitation and
exploration.

Efficient Moth-Flame-Based Neuroevolution Models 55

The pseudo-code of MFO is shown in the algorithm 1.

Algorithm 1 Pseudo-code of MFO technique
Input: Total number of moths and iterations (Tmax).
Output: The best solution and the its fitness value.
Initialize positions of moths xi (i = 1, 2, . . . , n)

Obtain the fitness of moths.
while (Looping condition is not met) do

Update flame no. based on Eq. (4)
Define: OM = Fitness Function(M)
if (i == 1) then

F = sort(M), OF=sort(OM)
else

F = sort(Mt−1, Mt), OF = sort(Mt−1, Mt);
end if
for i = 1 : n do

for j = 1 : d do
Update r and t
Obtain D by Eq. (3) with regard to the related moth
Update M(i, j) via Eqs. (1) and (2) with regard to the related moth

end for
end for

end while
Return the best solution

3 Foundation of MLP

FNNs are a family member of ANN models that are widely used for classification
tasks [4]. The neurons are the sets of processing elements that are considered as
the backbone block of each FNN and settled into different layers. The most popular
model for training of FNNs is known as multilayer perceptron (MLP) algorithm. A
sample structure of an MLP is illustrated in Fig. 1.

The output of each neuron in MLPs is determined by two phases: calculation of
summation and activation functions. The first phase is the calculation of weighted
summation of the input layer and bias terms using Eq. (5) :

Sj =
n

∑

i=1

ωi j Ii + β j , (5)

where Ii is the input variable, n denotes the number of input variables,wi j represents
the weights linking neurons of input layer to the hidden layer, and β j is the bias of
the network.

56 A. A. Heidari et al.

Input layer Output layer

Hidden layer

z1

Σ f2

Σ fh

e1

e2

e3 zn

zk

Σ f1

ek

z2

β1

βH

en zn

Fig. 1 Example of MLP network based on design of Heidari et al. [33]

The activation function is the second step should be addressed by using the output
of neurons as shown in Eq. (5). Several different forms of activation functions are
proposed for training MLPs. The most common method used in the literature is the
S-shaped curved sigmoid function as shown in Eq. (6):

f j (x) = 1

1+ e−Sj
(6)

As a result, the concluding output of the network can be calculated as given in
Eq. (7):

yi = f j

(
n

∑

i=1

ωi j Ii + β j

)

(7)

After designing the structure of MLP, the process of tuning and updating network
weights is performed by utilizing a training technique to justify the outcomes and
minimization of the errors of the network.

4 Structure of MFO-embedded MLPs

This section represents a detailed description for training process of MLP network
using MFO-based optimizer algorithm. This approach is named MFO-MLP and is
applied on a single hidden layer of MLP network in this study. To achieve this goal,
two key aspects are taken into consideration for constructing MFO-MLP algorithm:
the encoding representation of individuals (interaction between moths and flames)
in the MFO algorithm and selecting the formulation of the fitness function. In MFO-
MLP, all individuals are encoded as one-dimensional vectors of random real numbers
inside the interval [−1, 1]. Each generated solution by the encoding schema repre-

Efficient Moth-Flame-Based Neuroevolution Models 57

Fig. 2 Solutions’s structure
in MFO-MLP based on
design of Heidari et al. [33]

V1

Vm

T1

T2

Tn

S

ω12 ... ωmn W1 W2 ... Wm

ω11

ω12
ω1n

W1

β0 β1ω11 ... βm

βm-1

V2

ω21
ω22

ω2n

ωm1
ωm2

ωmn

β1

β0

W2

Wm

Output
results

Hidden
neurons

Input
neurons

sents anMLPcandidate. The designed vectors include three key parts: a set ofweights
connecting the input layer to hidden layer, the connection weights between the hid-
den layer and the output layer, and a set of bias weights. The structure of agents in
the proposed MFO-MLP is shown in Fig. 2.

To evaluate the fitness value of MFO-MLP approach, the vector of biases and
weights is passed to the MLP network. In this work, the mean squared error (MSE)
is utilized as the fitness function. This evaluation metric calculates the difference
between the actual andpredicted values obtainedby the generated individuals (MLPs)
using training samples. MSE metric is attained by Eq. (8):

MSE = 1

n

n
∑

i=1

(zi − ẑi)
2, (8)

where z and ẑ are the actual and predicted values, and n indicates the number of
instances in the dataset.

The workflow of the MFO-based MLP algorithm is shown in Fig. 3.

5 Results and Discussions

In this section, the results of MFO-MLP model are evaluated using 16 well-regarded
datasets (see Table2). These problems have been subject to many studies and can
show the real potential ofMLP-basedmodels. They have several featureswith various
instances and characteristics that make themmore attracting to benchmark classifiers
and learning models. Note that these problems are also publicly available at UCI
machine learning repository [34]. This open access also is beneficial because other

58 A. A. Heidari et al.

Evaluate the fitness values of
the input candidate solutions

Update the position of moths

Select the current optimal
solution

Maximum number of
iterations reached?

Return the best MLP network
with minimum MSE

Evaluate MLP based on MSE

Yes

No

MLP

Set the vector of weights and
biases

Test set Training set

Training datasets
Initialize the random swarm

Initialize the number of
iterations and agents

Start

Fig. 3 Flowchart of the proposed MFO-based model

MLP-based models can also substantiate their performances and then compare the
results with previously available models. However, in this study, we performed all
methods simultaneously to ensure fair comparison and similar initial population.
Details of all used datasets are further described in detail on Table2.

One of the important stages for validating the evolutionary methods is the choice
of other compared methods. First, they should be comparable, and the comparison
should be fair in different aspects. Second, they should be able to provide competitive
results. Hence, in this section, we used GA [35], PSO [36], DE [37], and population-
based incremental learning (PBIL) [12] optimizers to substantiate the efficacy of
the proposed MFO-based neuroevolution model. There are several reasons that we
selected these methods from a big set of available optimizers: first, these methods are
almost implemented for any kind of problems (constrained, unconstrained, single-
objective, multi-objective, etc.) and stable performance and results reported. Hence,

Efficient Moth-Flame-Based Neuroevolution Models 59

there is no doubt about their core abilities in solving optimization problems. Second,
we selected these methods because almost any audience in the field of optimization
and machine learning is familiar with at least one of them. Third, the parameter’s
settings of these algorithms are clear and accurate, and there is no origin bias or lack
of clarity in the structure of these well-established methods.

We performed all experiments in the same computing server, in which the details
are reported in Table1. Note that all experiments in this study follow the settings and
runs in previous works by Heidari et al. [33, 38]. The experiments in this chapter
reach the same results reported in [33] because of the same parameters and computing
conditions.

Table 1 Detail of the computing system

Name Settings

Hardware

CPU 1.70Ghz

Frequency 2.70GHz

RAM 64GB RAM

Hard drive 500GB

Software

Operating system Windows 7 (64-bit) Windows server 2012

Language Matlab 7.10 (R2010a)

Table 2 Summary of datasets [33]

Dataset Features Training samples Testing samples

Bank 48 2261 2260

Ionosphere 33 231 120

Chess 36 2109 1087

Australian 14 455 235

Credit 61 670 330

Spam base 57 2300 2301

Breast 8 461 238

Mammographic-mass 5 633 328

Monk 6 285 147

Sonar 60 137 71

Ring 20 4884 2516

Phoneme 5 3566 1838

Tic-Tac-Toe 9 632 326

Titanic 3 1452 749

Twonorm 20 4884 2516

Wdbc 30 375 194

60 A. A. Heidari et al.

Table 3 Used parameters of optimizers

Algorithm Parameter Value

DE Crossover rate 0.9

Differential weight 0.5

Number of agents 50

GA Crossover rate 0.9

Mutation rate 0.1

Selection method Random sampling

Number of agents 50

Number of iterations 200

PBIL Learning ratio 0.05

Fit swarm member 1

Not-fit swarm member 0

Elitism rate 1

Mutational rate 0.1

PSO Inertia weights [0.9, 0.6]
Acceleration factors [2.1, 2.1]
Number of agents 50

Another important aspect in evaluating the evolutionary approaches is how we set
the initial parameters. Note that we set the parameters of optimizers based on two
observations: primary tests and original papers. Details of settings are presented in
Table3.

Table4 exposes the average accuracy rates of MFO-MLP and standard deviations
(STD) of this method compared to the results attained by other competitors. Table5
also reveals the ranking of all optimizers based on average accuracy results presented
in Table4.

From Table4, we see that MFO outperforms other well-regarded peers such as
DE, GA, PSO, and PBIL on Australian, bank, breast, chess, credit, ionosphere,
mammographic-mass,monk, phoneme, ring, sonar, spambase, and twonormdatasets;
whereas, MFO can show better results on 81.25% of cases, and it can be detected
that PBIL has achieved the second best stage and can obtain satisfactory and very
competitive rates only on two datasets. We also see that PSO and DE cannot show
the best rates for any of the datasets.

As per ranks in Table5, we see the MFO is the best optimizer, followed by PBIL,
GA, PSO, and DE, respectively. We see that DE cannot show superior performance
in dealing with any of the datasets, which again remind us the conclusion of no free
lunch (NFL) theorem [39] that indicates several conclusions: first, a good optimizer
is not always the best for other problems, and there will be better competitors on
new cases. Second, new optimizers such as MFO can obtain better results on the
majority of cases, while it is expected to see also some worst results on other classes
of problems. Themain fact is that the average performance on all classes of problems

Efficient Moth-Flame-Based Neuroevolution Models 61

Table 4 Average accuracy results of MFO-MLP versus DE-MLP, PSO-MLP, PBIL-MLP, and
GA-MLP methods

Datasets Metric MFO-MLP DE-MLP PSO-MLP PBIL-MLP GA-MLP

Australian avg. 8.538E−01 7.588E−01 8.178E−01 8.254E−01 8.205E−01

std. 4.514E−02 5.102E−02 2.182E−02 1.538E−02 2.303E−02

Bank avg. 9.025E−01 8.850E−01 8.854E−01 8.879E−01 8.937E−01

std. 8.223E−02 4.733E−03 4.730E−03 3.688E−03 2.724E−03

Breast avg. 9.821E+01 9.391E−01 9.646E−01 9.661E−01 9.723E−01

std. 2.540E−03 1.964E−02 9.788E−03 7.797E−03 6.203E−03

Chess avg. 7.356E−01 6.263E−01 6.885E−01 7.051E−01 6.149E−01

std. 8.112E−02 2.832E−02 2.567E−02 2.270E−02 7.709E−02

Credit avg. 7.141E−01 6.917E−01 6.989E−01 7.069E−01 7.011E−01

std. 1.580E−02 2.128E−02 2.136E−02 2.128E−02 1.685E−02

Ionosphere avg. 7.852E−01 7.331E−01 7.614E−01 7.797E−01 7.556E−01

std. 3.745E−02 5.616E−02 4.390E−02 3.430E−02 4.240E−02

Mammographic-mass avg. 7.995E−01 7.939E−01 7.917E−01 7.882E−01 7.934E−01

std. 2.553E−03 1.711E−02 1.169E−02 1.325E−02 5.412E−03

Monk avg. 8.141E−01 7.120E−01 7.732E−01 7.732E−01 8.079E−01

std. 8.223E−02 5.562E−02 3.433E−02 3.410E−02 2.111E−02

Phoneme avg. 7.692E−01 7.395E−01 7.564E−01 7.584E−01 7.585E−01

std. 6.855E−03 2.451E−02 9.628E−03 1.597E−02 1.135E−02

Ring avg. 7.254E−01 6.499E−01 6.905E−01 7.124E−01 6.990E−01

std. 5.223E−02 2.227E−02 2.596E−02 1.588E−02 3.015E−02

Sonar avg. 6.895E−01 6.150E−01 6.291E−01 6.723E−01 5.869E−01

std. 2.550E−02 7.213E−02 6.723E−02 5.940E−02 7.538E−02

Spambase avg. 7.683E−01 6.566E−01 7.333E−01 7.322E−01 7.656E−01

std. 3.652E−02 4.878E−02 2.748E−02 2.831E−02 2.499E−02

Tictac avg. 6.322E−01 6.070E−01 6.304E−01 6.442E−01 6.323E−01

std. 1.234E−02 2.671E−02 3.372E−02 2.744E−02 1.994E−02

Titanic avg. 7.631E−01 7.623E−01 7.635E−01 7.646E−01 7.621E−01

std. 5.290E−03 7.649E−03 6.260E−03 6.691E−03 5.033E−03

Twonorm avg. 9.810E−01 8.062E−01 9.039E−01 9.257E−01 9.735E−01

std. 3.220E−02 4.021E−02 1.963E−02 1.319E−02 2.271E−03

Wdbc avg. 9.427E−01 8.617E−01 9.270E−01 9.246E−01 9.445E−01

std. 5.523E−02 3.786E−02 1.852E−02 1.343E−02 1.779E−02

will be similar. However, the third fact is that we can develop a special optimizer for
special cases of problems like MLP-based classification cases. However, we should
make it clear that the MFO is not an exception, and it also follows the general NFL
conditions.

Details of all experiments are shown in Table6.
In Table6, we reported best, worst, and median of all optimizers in dealing with

all problems. If we observe these results, we again see similar patterns that show the

62 A. A. Heidari et al.

Table 5 Ranks of algorithms based on accuracy rates

Dataset MFO-MLP DE-MLP PSO-MLP PBIL-MLP GA-MLP

Australian 1 5 4 2 3

Bank 1 5 4 3 2

Breast 1 5 4 3 2

Chess 1 4 3 2 5

Credit 1 5 4 2 3

Ionosphere 1 5 3 2 4

Mammographic-
mass

1 2 4 5 3

Monk 1 5 3 3 2

Phoneme 1 5 4 3 2

Ring 1 5 4 2 3

Sonar 1 4 3 2 5

Spambase 1 5 3 4 2

Tictac 3 5 4 1 2

Titanic 3 4 2 1 5

Twonorm 1 5 4 3 2

Wdbc 2 5 3 4 1

Average rank 1.3125 4.625 3.5 2.625 2.875

Sum of the ranks 21 74 56 42 46

Overall rank 1 5 4 2 3

MFO-MLP can outperform other competitors or provide very competitive results in
almost all cases. As we see, the MFO-MLP model also has enhanced the median of
solutions for most of the datasets.

There are several core reasons why MFO-MLP can show enhanced classification
rates. The first reason is that theMFO-MLP has a more stable capability in balancing
the exploratory and exploitative inclinations. When the MFO engine faces LO, it can
successfully jump out of them and continue the gradual enhancements in quality.
Second, MFO assigns a flame to each moth, which enhances the diversity of the
population during the optimization. Any enhancement in diversity will result in a
higher chance of avoiding LO and immature convergence problems. Third, in the
MFO part of the MFO-MLP, a number of flames progressively decrease, which
lead to a healthier equilibrium between exploration and exploitation tendencies. Any
better balance between these trends will lead to improved results in terms of average
and median of solutions as we observed in the results of MFO-MLP. Fourth, the
proposed MFO-MLP approach utilizes an adaptive convergence parameter that can
assist the base method in showing accelerated convergence propensities around the
flames during more iteration. Last but not the least is that the best agents in MFO
core are saved in the F matrix, and this means that they never get lost during the
next steps of the exploration and exploitation. Actually, best agents will guide the

Efficient Moth-Flame-Based Neuroevolution Models 63

Ta
bl
e
6

St
at
is
tic

al
m
ea
su
re
s
of

ac
cu
ra
cy

ra
te
s
fo
r
al
lt
ec
hn

iq
ue
s

A
lg
or
ith

m
s

M
FO

-M
L
P

D
E
-M

L
P

PB
IL
-M

L
P

PS
O
-M

L
P

G
A
-M

L
P

D
at
as
et

M
A
X

M
IN

M
E
D
.

M
A
X

M
IN

M
E
D
.

M
A
X

M
IN

M
E
D
.

M
A
X

M
IN

M
E
D
.

M
A
X

M
IN

M
E
D
.

A
us
tr
al
ia
n

8.
73

E
−0

1
8.
12

E
−0

1
8.
33

E
−0

1
8.
60

E
−0

1
6.
58

E
−0

1
7.
63

E
−0

1
8.
51

E
−0

1
7.
89

E
−0

1
8.
29

E
−0

1
8.
55

E
−0

1
7.
81

E
−0

1
8.
16

E
−0

1
8.
64

E
−0

1
7.
54

E
−0

1
8.
22

E
−0

1

Io
no

sp
he
re

8.
46

E
−0

1
7.
35

E
−0

1
7.
82

E
−0

1
8.
25

E
−0

1
5.
92

E
−0

1
7.
42

E
−0

1
8.
50

E
−0

1
7.
25

E
−0

1
7.
79

E
−0

1
8.
58

E
−0

1
6.
67

E
−0

1
7.
58

E
−0

1
8.
58

E
−0

1
6.
67

E
−0

1
7.
58

E
−0

1

M
am

m
o-

gr
ap
hi
c-

m
as
s

8.
09

E
−0

1
7.
90

E
−0

1
7.
90

E
−0

1
8.
17

E
−0

1
7.
50

E
−0

1
7.
99

E
−0

1
8.
05

E
−0

1
7.
50

E
−0

1
7.
93

E
−0

1
8.
17

E
−0

1
7.
68

E
−0

1
7.
90

E
−0

1
8.
08

E
−0

1
7.
84

E
−0

1
7.
93

E
−0

1

B
an
k

9.
22

E
−0

1
8.
92

E
−0

1
9.
13

E
−0

1
8.
90

E
−0

1
8.
67

E
−0

1
8.
86

E
−0

1
8.
94

E
−0

1
8.
76

E
−0

1
8.
88

E
−0

1
8.
94

E
−0

1
8.
73

E
−0

1
8.
87

E
−0

1
8.
99

E
−0

1
8.
86

E
−0

1
8.
94

E
−0

1

B
re
as
t

9.
92

E
−0

1
9.
75

E
−0

1
9.
81

E
−0

1
9.
71

E
−0

1
8.
95

E
−0

1
9.
41

E
−0

1
9.
79

E
−0

1
9.
54

E
−0

1
9.
66

E
−0

1
9.
79

E
−0

1
9.
45

E
−0

1
9.
66

E
−0

1
9.
83

E
−0

1
9.
58

E
−0

1
9.
75

E
−0

1

C
he
ss

8.
16

E
−0

1
7.
10

E
−0

1
7.
35

E
−0

1
6.
94

E
−0

1
5.
81

E
−0

1
6.
21

E
−0

1
7.
53

E
−0

1
6.
67

E
−0

1
6.
99

E
−0

1
7.
53

E
−0

1
6.
41

E
−0

1
6.
90

E
−0

1
7.
75

E
−0

1
5.
13

E
−0

1
6.
00

E
−0

1

Ph
on

em
e

7.
81

E
−0

1
7.
41

E
−0

1
7.
59

E
−0

1
7.
87

E
−0

1
6.
85

E
−0

1
7.
41

E
−0

1
7.
85

E
−0

1
7.
13

E
−0

1
7.
60

E
−0

1
7.
86

E
−0

1
7.
37

E
−0

1
7.
57

E
−0

1
7.
79

E
−0

1
7.
36

E
−0

1
7.
59

E
−0

1

So
na
r

7.
18

E
−0

1
6.
10

E
−0

1
6.
79

E
−0

1
7.
61

E
−0

1
4.
51

E
−0

1
6.
20

E
−0

1
7.
75

E
−0

1
5.
21

E
−0

1
6.
76

E
−0

1
7.
75

E
−0

1
4.
65

E
−0

1
6.
48

E
−0

1
7.
32

E
−0

1
4.
65

E
−0

1
5.
77

E
−0

1

C
re
di
t

7.
35

E
−0

1
6.
51

E
−0

1
7.
00

E
−0

1
7.
39

E
−0

1
6.
45

E
−0

1
6.
92

E
−0

1
7.
58

E
−0

1
6.
67

E
−0

1
7.
06

E
−0

1
7.
36

E
−0

1
6.
36

E
−0

1
7.
00

E
−0

1
7.
18

E
−0

1
6.
42

E
−0

1
7.
09

E
−0

1

R
in
g

7.
72

E
−0

1
7.
11

E
−0

1
7.
21

E
−0

1
7.
02

E
−0

1
6.
04

E
−0

1
6.
52

E
−0

1
7.
42

E
−0

1
6.
76

E
−0

1
7.
15

E
−0

1
7.
41

E
−0

1
6.
22

E
−0

1
6.
94

E
−0

1
7.
65

E
−0

1
6.
52

E
−0

1
6.
92

E
−0

1

M
on

k
8.
41

E
−0

1
7.
68

E
−0

1
8.
01

E
−0

1
8.
37

E
−0

1
5.
92

E
−0

1
7.
21

E
−0

1
8.
50

E
−0

1
7.
07

E
−0

1
7.
82

E
−0

1
8.
50

E
−0

1
7.
01

E
−0

1
7.
69

E
−0

1
8.
44

E
−0

1
7.
69

E
−0

1
8.
03

E
−0

1

Sp
am

ba
se

8.
13

E
−0

1
7.
14

E
−0

1
7.
59

E
−0

1
7.
35

E
−0

1
5.
61

E
−0

1
6.
63

E
−0

1
8.
01

E
−0

1
6.
74

E
−0

1
7.
41

E
−0

1
7.
85

E
−0

1
6.
81

E
−0

1
7.
31

E
−0

1
7.
92

E
−0

1
6.
97

E
−0

1
7.
75

E
−0

1

Tw
on

or
m

9.
61

E
−0

1
9.
15

E
−0

1
9.
51

E
−0

1
8.
76

E
−0

1
6.
94

E
−0

1
8.
03

E
−0

1
9.
52

E
−0

1
9.
01

E
−0

1
9.
25

E
−0

1
9.
45

E
−0

1
8.
62

E
−0

1
9.
08

E
−0

1
9.
78

E
−0

1
9.
69

E
−0

1
9.
73

E
−0

1

W
db

c
9.
72

E
−0

1
8.
84

E
−0

1
9.
41

E
−0

1
9.
33

E
−0

1
7.
68

E
−0

1
8.
58

E
−0

1
9.
54

E
−0

1
9.
02

E
−0

1
9.
25

E
−0

1
9.
69

E
−0

1
8.
81

E
−0

1
9.
28

E
−0

1
9.
85

E
−0

1
8.
97

E
−0

1
9.
43

E
−0

1

T
ic
ta
c

7.
12

E
−0

1
6.
23

E
−0

1
6.
63

E
−0

1
6.
60

E
−0

1
5.
49

E
−0

1
6.
04

E
−0

1
6.
99

E
−0

1
5.
95

E
−0

1
6.
40

E
−0

1
6.
81

E
−0

1
5.
49

E
−0

1
6.
33

E
−0

1
6.
66

E
−0

1
5.
98

E
−0

1
6.
37

E
−0

1

T
ita
ni
c

7.
69

E
−0

1
7.
51

E
−0

1
7.
62

E
−0

1
7.
70

E
−0

1
7.
38

E
−0

1
7.
61

E
−0

1
7.
78

E
−0

1
7.
40

E
−0

1
7.
66

E
−0

1
7.
70

E
−0

1
7.
46

E
−0

1
7.
68

E
−0

1
7.
70

E
−0

1
7.
52

E
−0

1
7.
61

E
−0

1

64 A. A. Heidari et al.

rest of agents towards more favourable zones of the feature space. Taking together,
all these merits can be expected from the proposed MFO-MLP framework. From the
other hand, methods such as PSO, DE, PBIL, and GA cannot show such behaviours,
mathematically. One point that should not be overlooked is that any optimizer is a
good alternative compared to some other candidates, but this will not remain always
valid. It is possible to deal with some other classes of datasets with different nature
and properties and see different results. It is obvious that all these methods are
stochastic in nature and almost all of them cannot guarantee convergence to global
best. Although the resultsmay be different, theMFOwill still show similarmerits and
searching patterns that can be beneficial in solving any kind of problems, especially
in machine learning.

6 Conclusions and Future Directions

This chapter focused on the mathematical model of a new optimizer called MFO.
As one of the initial studies, we utilized the exploration and exploitation phases of
MFO to develop an efficient neuroevolution model for classification problems. This
chapter provides the theoretical backgrounds required to develop an effective and
simple neuroevolution model based on MLP. We presented an encoding approach
and defined an objective function to be minimized. Then, we utilized the proposed
MFO-based model to deal with 16 widely used datasets. The results show improved
performance of the proposed model on mediocre and large datasets compared to
models-based GA, PSO, DE, and PBIL techniques.

For future works, other metrics can be investigated. In addition, there are many
high-dimensional datasets in real-world applications that can be used to further verify
the efficacy of the developed model.

References

1. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity.
Bull Math Biophys 5:115–133

2. Chen J-F, Do QH, Hsieh H-N (2015) Training artificial neural networks by a hybrid pso-cs
algorithm. Algorithms 8:292–308

3. Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control
Signals Syst (MCSS) 2:303–314

4. Ojha VK, Abraham A, Snášel V (2017) Metaheuristic design of feedforward neural networks:
a review of two decades of research. Eng Appl Artifi Intell 60:97–116

5. Valdez F, Melin P, Castillo O (2014) A survey on nature-inspired optimization algorithms with
fuzzy logic for dynamic parameter adaptation. Exp Syst Appl 41:6459–6466

6. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimiza-
tion: algorithm and applications. Future Gener Comput Syst 97:849–872

7. Luo J, Chen H, Heidari AA, Xu Y, Zhang Q, Li C (2019) Multi-strategy boosted mutative
whale-inspired optimization approaches. Appl Math Modell 73:109–123

Efficient Moth-Flame-Based Neuroevolution Models 65

8. Deng W, Yao R, Zhao H, Yang X, Li G (2017) A novel intelligent diagnosis method using
optimal ls-svm with improved pso algorithm. Soft Comput. https://doi.org/10.1007/s00500-
017-2940-9

9. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global
optimization over continuous spaces. J Global Optim 11:341–359

10. Heidari AA, Aljarah I, Faris H, Chen H, Luo J, Mirjalili S (2019) An enhanced associative
learning-based exploratory whale optimizer for global optimization. Neural Comput Appl

11. Mallipeddi R, Suganthan PN, Pan Q-K, Tasgetiren MF (2011) Differential evolution algorithm
with ensemble of parameters and mutation strategies. Appl Soft Comput 11:1679–1696

12. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12:702–713
13. Xu Y, Chen H, Heidari AA, Luo J, Zhang Q, Zhao X, Li C (2019) An efficient chaotic mutative

moth-flame-inspired optimizer for global optimization tasks. Exp Syst Appl 129:135–155
14. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic

paradigm. Knowl Based Syst 89:228–249
15. Zhao H, Zhao H, Guo S (2016) Using GM (1, 1) optimized by MFO with rolling mechanism

to forecast the electricity consumption of inner mongolia. Appl Sci (Switz) 6:1–18
16. Sayed GI, Hassanien AE (2017) Moth-flame swarm optimization with neutrosophic sets for

automatic mitosis detection in breast cancer histology images. Appl Intell 47:397–408
17. Allam D, Yousri DA, Eteiba MB (2016) Parameters extraction of the three diode model for the

multi-crystalline solar cell/module using moth-flame optimization algorithm. Energy Convers
Manage 123:535–548

18. LiC, Li S, LiuY (2016)A least squares support vectormachinemodel optimized bymoth-flame
optimization algorithm for annual power load forecasting. Appl Intell 45:1166–1178

19. Ng Shin Mei R, SulaimanMH, Mustaffa Z, Daniyal H (2017) Optimal reactive power dispatch
solution by loss minimization using moth-flame optimization technique. Appl Soft Comput J
59:210–222

20. Li C, Hou L, Sharma BY, Li H, Chen C, Li Y, Zhao X, Huang H, Cai Z, Chen H (2018)
Developing a new intelligent system for the diagnosis of tuberculous pleural effusion. Comput
Methods Programs Biomed 153:211–225

21. Aziz MAE, Ewees AA, Hassanien AE (2017) Whale optimization algorithm and moth-flame
optimization for multilevel thresholding image segmentation. Exp Syst Appl 83:242–256

22. Li Z, Zhou Y, Zhang S, Song J (2016) Levy-flight moth-flame algorithm for function optimiza-
tion and engineering design problems. Math Probl Eng 2016:22

23. Trivedi IN, Kumar A, Ranpariya AH, Jangir P (2016) Economic load dispatch problem with
ramp rate limits and prohibited operating zones solve using levy flight moth-flame optimizer.
In: 2016 international conference on energy efficient technologies for sustainability, ICEETS
2016, pp 442–447

24. Hassanien AE, Gaber T, Mokhtar U, Hefny H (2017) An improved moth flame optimization
algorithm based on rough sets for tomato diseases detection. Comput ElectronAgric 136:86–96

25. Wang M, Chen H, Yang B, Zhao X, Hu L, Cai Z, Huang H, Tong C (2017) Toward an opti-
mal kernel extreme learning machine using a chaotic moth-flame optimization strategy with
applications in medical diagnoses. Neurocomput 267:69–84

26. Zhang L, Mistry K, Neoh SC, Lim CP (2016) Intelligent facial emotion recognition using
moth-firefly optimization. Knowl Based Syst 111:248–267

27. Apinantanakon W, Sunat K (2018) Omfo: a new opposition-based moth-flame optimization
algorithm for solving unconstrained optimization problems.Adv Intell Syst Comput 566:22–31

28. Li WK, Wang WL, Li L (2018) Optimization of water resources utilization by multi-objective
moth-flame algorithm. Water Resour Manage 32:3303–3316

29. Khalilpourazari S, Khalilpourazary S (2019)An efficient hybrid algorithm based onwater cycle
and moth-flame optimization algorithms for solving numerical and constrained engineering
optimization problems. Soft Computing 23(5):1699–1722

30. Elsakaan AA, El-Sehiemy RA, Kaddah SS, Elsaid MI (2018) An enhanced moth-flame opti-
mizer for solving non-smooth economic dispatch problems with emissions. Energy 157:1063–
1078

https://doi.org/10.1007/s00500-017-2940-9
https://doi.org/10.1007/s00500-017-2940-9

66 A. A. Heidari et al.

31. Yamany W, Fawzy M, Tharwat A, Hassanien AE (2015) Moth-flame optimization for train-
ing multi-layer perceptrons. In: 2015 11th international computer engineering conference
(ICENCO). IEEE, pp 267–272

32. Majhi SK,Mahapatra P (2019) Classification of phishing websites usingmoth-flame optimized
neural network. In: Emerging technologies in data mining and information security. Springer,
pp 39–48

33. Heidari AA, Faris H, Mirjalili S, Aljarah I, Mafarja M (2020) Ant lion optimizer: theory, liter-
ature review, and application in multi-layer perceptron neural networks. Springer International
Publishing, Cham, pp 23–46

34. Lichman M (2013) UCI machine learning repository. Retrieved from https://archive.ics.uci.
edu/ml/index.php

35. Weile DS, Michielssen E (1997) Genetic algorithm optimization applied to electromagnetics:
a review. IEEE Trans Antennas Propag 45:343–353

36. Lin S-W, Ying K-C, Chen S-C, Lee Z-J (2008) Particle swarm optimization for parameter
determination and feature selection of support vector machines. Exp Syst Appl 35:1817–1824

37. Ilonen J, Kamarainen J-K, Lampinen J (2003) Differential evolution training algorithm for
feed-forward neural networks. Neural Process Lett 17:93–105

38. Heidari AA, Faris H, Aljarah I, Mirjalili S (2018) An efficient hybrid multilayer perceptron
neural network with grasshopper optimization. Soft Comput 1–18

39. Wolpert DH, MacreadyWG (1997) No free lunch theorems for optimization. IEEE Trans Evol
Comput 1:67–82

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php

Autonomous Robot Navigation Using
Moth-Flame-Based Neuroevolution

Seyed Mohammad Jafar Jalali, Rachid Hedjam, Abbas Khosravi,
Ali Asghar Heidari, Seyedali Mirjalili and Saeid Nahavandi

Abstract Determining the best set ofweights and biases for training neural networks
(NN) using gradient descent techniques is a computationally challenging task. On
the other hand, training of gradient descent algorithms suffers from being trapped in
local optima and slow convergence speed in the last iterations. The moth-flame opti-
mization (MFO) is a novel evolutionary method based on navigation paths of moths
in nature. This algorithm showed its effectiveness in many real-world optimization
problems. In this chapter,MFO is employed for trainingmultilayer perceptron (MLP)
to overcome the problems of gradient descent algorithms. This algorithm also in-
vestigates the application of the MFO for tackling the navigation of autonomous
mobile robots. The results are compared with four powerful evolutionary algorithms
including gray wolf optimizer (GWO), cuckoo search (CS), multiverse optimizer

S. M. J. Jalali (B) · A. Khosravi · S. Nahavandi
Institute for Intelligent Systems Research and Innovation (IISRI),
Deakin University, Waurn Ponds, VIC 3216, Australia
e-mail: sjalali@deakin.edu.au

A. Khosravi
e-mail: abbas.khosravi@deakin.edu.au

S. Nahavandi
e-mail: saeid.nahavandi@deakin.edu.au

R. Hedjam
Sultan Qaboos University, Muscat, Sultanate of Oman
e-mail: rachid.hedjam@squ.edu.om

A. A. Heidari
School of Surveying and Geospatial Engineering, College of Engineering,
University of Tehran, Tehran, Iran

A. A. Heidari
Department of Computer Science, School of Computing, National University of Singapore,
Singapore, Singapore
e-mail: as_heidari@ut.ac.ir; aliasgha@comp.nus.edu.sg; t0917038@u.nus.edu

S. Mirjalili
Torrens University Australia, Fortitude Valley, Brisbane, QLD 4006, Australia
e-mail: ali.mirjalili@gmail.com

Griffith University, Brisbane, QLD 4111, Australia

© Springer Nature Singapore Pte Ltd. 2020
S. Mirjalili et al. (eds.), Evolutionary Machine Learning Techniques,
Algorithms for Intelligent Systems, https://doi.org/10.1007/978-981-32-9990-0_5

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-32-9990-0_5&domain=pdf
mailto:sjalali@deakin.edu.au
mailto:abbas.khosravi@deakin.edu.au
mailto:saeid.nahavandi@deakin.edu.au
mailto:rachid.hedjam@squ.edu.om
mailto:as_heidari@ut.ac.ir
mailto:aliasgha@comp.nus.edu.sg; t0917038@u.nus.edu
mailto:ali.mirjalili@gmail.com
https://doi.org/10.1007/978-981-32-9990-0_5

68 S. M. J. Jalali et al.

algorithm (MVO), and particle swarm optimization (PSO). Moreover, the results
are compared to two gradient-based training MLP algorithms including Levenberg–
Marquardt (LM) and back-propagation (BP). The evaluation metrics used in this
book chapter are accuracy and area under the curve (AUC). The experimental results
show that MFO-based MLP algorithm outperforms other algorithms and showed its
capabilities effectively.

Keywords Robot navigation · Neural network · Neuroevolution · Evolutionary
algorithm · Moth-Flame optimization

1 Introduction

Advances in the field of ANN and machine learning have exploded in recent years.
The excitement comes from the fact that ANNmimics the learning process of the hu-
man brain, which gives them the characteristic of being efficient in handling complex
and nonlinear data. They are, therefore, ideal for modeling different real data.

ANNs are inspired by biological nervous systems. In general, ANN can be pre-
sented into two main architectures, recurrent, which involves feedback (loops) and
nonrecurrent, which does not involve feedback [6]. ANNs differ not only in their
architectures or structures but also in the learning process they use. They possess a
relevant characteristic, namely the ability to learn from the input samples [2]. The
learning process expresses the behavior of the network byfinding a function thatmaps
the inputs to the expected (correct) outputs. These can be expressed as a weighted
combination of inputs.

The algorithm commonly used to estimate the optimal weights minimizing the
error between the actual and predicted outputs is the gradient descent and its deriva-
tives, in particular, back-propagation (BP). The latter is mainly used by deep learning
architectures, the ANN, which obtained the state of the art in almost all applications.
Nevertheless, gradient descent-based algorithms can result in a movement toward
the local minimum [1]. Being stuck in the local minimum can be due to several
reasons, in particular, those related mainly to the style of learning and the architec-
tures of the networks used. This problem has been addressed in many papers, and
it has been examined using different approaches, namely deterministic and proba-
bilistic approaches. In the deterministic approaches, the primary descent technique
is replaced by the global descent [9] and other related works addressing global op-
timization can be also found in the literature [9]. In the probabilistic approach, the
focus was on the way to initialize the weights that can decrease the probability of
converging toward local minima [24]. Although these approaches are fairly easy to
implement and can also converge toward the global minimum, they unfortunately
require a lot of running time.

Another interesting approach to learning the ANNs is to combine them with evo-
lutionary algorithms (EAs). One of the strengths of the EAs over the two former ones
is that they have enough resources to converge on the optimal solution. Metaheuristic

Autonomous Robot Navigation Using Moth-Flame-Based Neuroevolution 69

and evolutionary algorithms are known as stochastic approaches that are suitable to
tackle complex, high dimensional, and NP-hard problems after spending a reason-
able time. There are many swarm-based optimizers such as salp swarm algorithm
(SSA) [15], Harris hawks optimization (HHO) [8], dragonfly algorithm (DA) [14],
GWO [17], MFO [13], and whale optimizer (WOA) [16]. Neural networks using
EAs have been studied for years, including genetic algorithms (GAs) [7], which are
in fact the most widely used. The most popular way to combine EAs with ANNs is
to use GAs to search globally in the space of solutions (weight configurations) and
then improve this space in an iterative manner until the best solution is found (best
configuration of the weights) [20]. Beside GA, other types of evolutionary methods
have been used to learn ANNs [12].

In this chapter, we will focus more on the application of ANNs to autonomous
robot navigation. Navigation is one of the most important elements in the design
and development of any intelligent vehicle. Maintaining operation while avoiding
collisions and staying safe is a priority in autonomous robots. Avoiding obstacles is
the fundamental problem of the autonomous robot. Its purpose is to allow mobile
robots to explore an unknown environment without colliding with objects. The most
traditional approaches have been based on geometric models in which local cost
maps have been constructed. These methods involve low-level intelligence, without
any process of perception and/or sensing. Recently, navigation and robot trajectory
planning have improved considerably with the help of ANNs, particularly MLP,
reinforcement learning, and DNNs, because of their ability to automatically create
the relevant features needed to control robots [21].

As discussed at the beginning of this section, evolutionarymethods have also been
used successfully to learn ANNs. Thanks to their ability to find global minimums,
EAs are combined with ANNs to improve the development of smarter robots with
greater navigation accuracy [3, 22, 27]. Our specific objective, in this chapter, is
to empirically study other types of EAs and to demonstrate their effectiveness in
autonomous robot navigation. More attention will be given to MFO.

MFO is a stochastic algorithm that inspires from transverse orientation of moths,
a navigation method in nature. It has been proposed by Mirjalili [13]. Theorem
of no free lunch (NFL) [25] states that there is no universal best optimizer. This
theorem motivated us to train MLP using MFO algorithm and four other algorithms
including GWO [17], cuckoo search (CS) [28], MVO [19], and PSO [10]. Besides,
this algorithm is compared with two well-regarded gradient descent algorithm such
as back-propagation and Levenberg–Marquardt (LM) to show how effective is MFO
in training MLP in comparison with gradient descent methods. All the experiments
were executed on a mobile robot navigation dataset. The evaluation metrics show
the exploration and exploitation capabilities of MFO in comparison with all other
methods used in this work.

The structure of this chapter is as follows: Sect. 2 zooms on the proposed MFO-
based MLP trainer and the dataset used in this chapter. Section3 describes the con-
figuration of methods. Sections 4 and 5 are devoted to the results and discussions,
respectively. Finally, the remarks and future research directions are concluded in
Sect. 6.

70 S. M. J. Jalali et al.

2 Materials and Methods

In this section, the methods and dataset used in this research are described in detail.

2.1 Feedforward Neural Networks

Feedforward neural networks (FFNNs) are themost widely used of NNs that can per-
ceivemathematical models using their fully connected layered structures. Among the
neurons of FNNs, there are only one-directional and one-way connections arranging
in various parallel layers [23]. FFNN networks contain three layers. Input layer is
the first layer in FFNNs, and output layer is the last layer of FFNNs. Intermediate
layers between input and output layer are called hidden layer. EA FFN consisting of
the hidden layer is called MLP, which is illustrated in Fig. 1.

The connections among the layers in theMLP are represented as weights locating
in the range of [−1, 1]. Two functions form the node structures of MLP networks
including summation and activation. As presented in Eq. (1), the summation function
is responsible in order to sum up for the product of each input, weight, and bias of
the networks.

Sj =
n∑

i=1

ωi j Ii + β j (1)

where the total number of neuron inputs is represented by n , variable i as input
is determined by Ii , β j denotes to bias (threshold) weights of j-th hidden neuron,
and the connection weights from the i-th node in the input layer to the j-th node in
the hidden layer are determined by wi j .

The output of Eq. (1) is an input to the activation function. There are several types
of activation functions utilized for training MLPs. The most used activation function
is the sigmoid function described in Eq. (2).

Fig. 1 Overall structure of
MLP based on design in [7]

Input layer Output layerHidden layer

ŷ1

Σ f2

Σ fh

I1

I2

I3 ŷn

ŷk

Σ f1

In

ŷ2

β1 βH

Autonomous Robot Navigation Using Moth-Flame-Based Neuroevolution 71

f j (x) = 1

1 + e−Sj
(2)

Consequently, the final output of each neuron j can be described in Eq. (3) :

yi = f j (
n∑

i=1

ωi j Ii + β j) (3)

After designing the MLP structure, the procedure of training is accomplished for
updating and tuning the set of biases and weights of the MLP network by meeting
error criteria. The procedure of selecting appropriate sets of weight and bias between
the inputs and outputs ofMLPs is a challenging task and is considered as the definition
of training MLPs. In the next, MFO is used as the trainer for the learning procedure
of the MLPs.

2.2 MFO Algorithm

The MFO is a recent nature-inspired metaheuristic paradigm that attempts to imitate
the navigation of moths in the night. MFO is a population-based algorithm, and
there are several advanced variants of this method until now [26]. In this method, the
moth’s positions are managed using amatrix to setup the population of this algorithm
as follows:

M =

⎡

⎢⎢⎢⎣

z1,1 z1,2 · · · z1,d
z2,1 z2,2 · · · z2,d
...

...
. . .

...

zn,1 zn,2 · · · zn,d

⎤

⎥⎥⎥⎦ (4)

where the number of moths z is represented by index of n and d. Assume that for
each moth of the problem, there is a sorted array according to the values of objective
function represented as follows:

OM =

⎡

⎢⎢⎢⎢⎢⎣

om1

om2

om3
...

omn

⎤

⎥⎥⎥⎥⎥⎦
(5)

In which to the number of moths is denoted by n.
Another important component of this algorithm is the role of flames. The structure

of the matrix of moths is very similar to the moths:

72 S. M. J. Jalali et al.

F =

⎡

⎢⎢⎢⎣

f1,1 f1,2 · · · f1,d
f2,1 f2,2 · · · f2,d
...

...
. . .

...

fn,1 fn,2 · · · fn,d

⎤

⎥⎥⎥⎦ (6)

where the number of flames is represented by n index.
Moreover, we have an array for sorting the corresponding flames according to

OF =

⎡

⎢⎢⎢⎢⎢⎣

OF1

OF2

OF3
...

OFn

⎤

⎥⎥⎥⎥⎥⎦
(7)

where n denotes the flames’s number.
MFO uses logarithmic spiral in order to update the position of moths with regard

to flames as below:
S(Mi , Fj) = Die

bz cos(2π z) + Fj (8)

where Mi indicates the i-th moth, and Fj represents the j-th flame. In addition, the
spiral function acting as the main component of MFO algorithm is represented by S
and in order to define the shape of logarithmic spirals, b as a constant is considered.
z is assumed as a random number in the range of [−1,1], and the distance between
i-th moth and j-th flame is determined by Di .

Generally, in MFO, both moths and flames are assumed as all feasible solutions
in the search space. Moths act as the search agents and the best position of the moths
is obtained using flames. Consequently, moths search around the position of flames
and update them in order to obtain a better solution. This procedure makes keeping
the best solutions.

The pseudo-code of MFO method is represented in the algorithm 1.

2.3 MFO for Training MLPs

In this section, we describe the proposed MFO-based MLP (MFO-MLP) trainer
algorithm. In order to utilize the training procedure of MLP using MFO, two crucial
aspects have to be addressed: how the individuals (moths) of MFO can be encoded
in training of the MLP network and how the objective function (fitness function) can
be formulated. In MFO-MLP, all individuals are encoded as the vectors of randomly
real numbers within the [−1, 1] interval in order to represent a MLP candidate.
Therefore, each vector in MFO consists of three parts. The format of solutions is
shown in Fig. 2.

Autonomous Robot Navigation Using Moth-Flame-Based Neuroevolution 73

Algorithm 1 Pseudo-code of MFO approach
Input: iteration number (Tmax) and Population size of the problem.
Output: The best obtained solution and related values of fitness
Initialize the population of agents xi (i = 1, 2, . . . , n)

Obtain the fitness rates.
while (maximum iterations) do

Update flame number
Define: OM = Fitness Function(M)
if (i == 1) then

F = sort(M), OF=sort(OM)
else

F = sort(Mt−1, Mt), OF = sort(Mt−1, Mt);
end if
for i = 1 : n do

for j = 1 : d do
Update r and t
Obtain D
Update S(i, j)

end for
end for

end while
Return the best agent

Fig. 2 Solution’s structure
in MFO-MLP based on work
in [7]

I1

Im

H1

H2

Hn

O

ω12 ... ωmn W1 W2 ... Wm

ω11

ω12
ω1n

MFO-based solution vector

W1

β0 β1ω11 ... βm

βm-1

I2

ω21
ω22

ω2n

ωm1
ωm2

ωmn

β1

β0

W2

Wm

The length of each vector is calculated as shown below:

Vector_length = (n × m) + (2 × m) + 1 (9)

where the number of input features in the dataset is indicated by n and in the hidden
layer, m represents the number of neurons.

74 S. M. J. Jalali et al.

Initialize the agents

Evaluate the fitness of each
moth

Update the position of moths

Start

Select the current optimal
solution

Maximum number of
iterations reached?

Return the best MLP network
with minimum MSE

Evaluate MLP
based on MSE

YesNo

MLP

Set the vector of weights and
biases

Test set Training set

Training datasets

Fig. 3 Framework of MLP optimization using MFO algorithm

The second aspect that needs be addressed here is for selecting fitness function.
In MFO algorithm, the vector of connection weights and biases is sent to the MLP
network. Then,MLPevaluates those vectors using the training dataset. In this chapter,
the mean squared error (MSE) is selected as the fitness function in order to calculate
the fineness of the generated MLPs.

The MSE metric is obtained by

MSE = 1

n

n∑

i=1

(yi − ŷi)
2 (10)

where yi and ŷi indicate the actual and the predicted values, and the total number of
instances in the training dataset is represented by n.

The overall steps of theMFO-based technique for theMLPneural network training
are depicted in Fig. 3.

Autonomous Robot Navigation Using Moth-Flame-Based Neuroevolution 75

Table 1 Details of class features distribution of mobile robot navigation dataset

Name of class feature No. of instances Percentage (%)

Slight-right-turn 824 71

Slight-left-turn 330 29

2.4 Dataset

The dataset used in this study is for the experiments on the collection of multiple sen-
sors extracted from a mobile robot navigating through a room [11]. The aim of this
robot is for object’s collision avoidance that surrounds it. This dataset is for the su-
pervised learning tasks and contain 5426 instances with 24 features and four classes.
These four classes in the dataset aremove-forward, sharp-right-turn, slight-right-turn,
and slight-left-turn. The algorithms used in this study are implemented for binary
classification tasks. Therefore, we consider the slight-right-turn and slight-left-turn
classes to reshape the dataset in a binary format. This procedure leads to a reduction
in number of samples of the dataset into 1154 samples as represented in Table1.
More information about the used dataset in this research is represented in [4, 11].

3 Experimental Setup

This section compares the developed MFO-MLP trainer with other well-regarded
EA-based MLP trainers and gradient-based training algorithms. Accuracy and area
under the curve (AUC) are the evaluation metrics used in this work. We also used
T-test.

All the experiments used in this work for implementing theMFO trainer and other
algorithms are conducted using Python 3.7 on a 64-bit Windows operation system
and an Intel 7 CPU processor at 1.9GHz with a 16GB ram. It should be noted that
in this work no commercial software for implementing the algorithms was utilized.
The mobile robot dataset used in this study is partitioned into two components: 34%
for testing and 66% for training using strategy of random sampling. Before training
the EAs with MLPs, it is important to normalize the dataset for eliminating the
influence of features having different scales. Therefore, all the features of the dataset
are normalized using minmax normalization technique into the range of [0, 1]. This
technique is given in the following rule:

W ′ = vi − minJ

maxJ −minJ
, (11)

where W ′ represents the normalized value of W in the interval of [min j , max j].

76 S. M. J. Jalali et al.

Table 2 Initial parameters of five EAs

Algorithm Parameter Value

MVO Wormhole existence
probability

[0.2, 1]

MFO T [−1, 1]

PSO Acceleration constants
Inertia weights

[2.1, 2.1]

CS Discovery rate Pα 0.25

GWO a [2, 0]

In all experiments, each algorithm executes 30 independent runs, and in each run,
there are 100 iterations. Besides, the population size is set to 200 for all EAs used in
this study.

The controlling parameters for MFO, MVO, CS, PSO, and GWO are listed in
Table2. The initialization of these parameters for each EA is set as utilized and
recommended in the specialized literature [5, 12, 18].

For determining howmany neurons should be used in the hidden layer, researchers
proposed different approaches in the literature. However, there are not standard prin-
ciples that are agreed among the researchers about the superiority on which rule to
be applied. In this study, it is followed by a common rule proposed by [5, 12, 18]
where the rule set of the number of neurons in the hidden layer of MLP network is
calculated by

E = 2 × H + 1. (12)

where H is the number of features in the dataset.

4 Experimental Results

MFO-basedMLPs trainer is comparedwith different EAs and gradient-based trainers
using three different classificationmetrics commonly popular in themachine learning
field. These metrics are accuracy, AUC, and T-test.

4.1 Comparison with Other Well-Regarded Evolutionary
Optimizers

This section describes the results of MFO-based MLP trainer in comparison with
these EAs including CS, PSO, GWO, and MVO. As it can be seen from Table3,
the statistical results including average (AVG) of classification accuracy, standard

Autonomous Robot Navigation Using Moth-Flame-Based Neuroevolution 77

Table 3 Evaluation metrics ofMLP training with different EAs for mobile robot navigation dataset

Algorithm Metric Accuracy AUC

MFO AVG 0.944027 0.910519
STD 0.022473 0.034488
Best 0.954555 0.943893

MVO AVG 0.896862 0.824279

STD 0.018695 0.039742

Best 0.926209 0.880308

PSO AVG 0.892112 0.814497

STD 0.027771 0.048671

Best 0.933842 0.884597

GWO AVG 0.590843 0.583636

STD 0.221569 0.191476

Best 0.870229 0.907115

CS AVG 0.881086 0.803507

STD 0.017859 0.036756

Best 0.910941 0.846466

deviation (STD) and the most accurate results of the each proposed EA show that
MFO-based optimizer outperforms all other evolutionary trainers. Another important
point that should bementioned is that the obtained values by accuracy show thatMFO
has the lowest standard deviation and highest average giving this strong evidence that
this algorithm can strongly prevent convergence into the local optima and obtain the
optimal and best values for weights and biases of MLP networks. Moreover, MFO
obtains the highest accuracy in comparison with other EAs showing that this EA has
improvements in prediction of robot navigation.

AUC evaluation results for the proposed MFO and other EAs based on MLP
networks are demonstrated in Table3. According to the obtained results, the average,
standard deviation, and best values reported for AUC denote that MFO-based trainer
performs more robust than all the other EAs in the mobile robot dataset.

The boxplots forMFO as well as other EAs-basedMLPmodels are represented in
Figs. 4 and 5. These boxplots are created for reporting the accuracy and AUC rates of
30 independent runs for all EAs. The boxplots prove that MFO algorithm performs
better than all other EAs for training MLP since this algorithm yields more compact
boxes, and its median is higher than all other EAs.

To see whether the results of MFO-based trainer in terms of accuracy and AUC
is significantly and statistically different from and greater than other evolutionary
optimizers; the right one tailed T-test (greater than) experiment is implemented at
5% significance level. The obtained p-values by each EA-based trainer from T-test
experiment are represented in Table4. The results reveal that a significant difference
exists between accuracy and AUC results obtained byMFO algorithm in comparison
with other EAs. Besides, the average of accuracy and AUC values of MFO is always

78 S. M. J. Jalali et al.

PSO MFO GWO MVO CS
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Algorithms

C
la

ss
if

ic
at

io
n

ac
cu

ra
cy

 r
es

ul
ts

Fig. 4 Boxplot representation of the accuracy for different evolutionary optimizers

PSO MFO GWO MVO CS
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Algorithms

C
la

ss
if

ic
at

io
n

A
U

C
 r

es
ul

ts

Fig. 5 Boxplot representation of the AUC for different evolutionary optimizers

Table 4 Obtained p-values of the T-test for MFO and other EA-based MLP trainers

Algorithm/Metric PSO GWO MVO CS

Accuracy 2.29E-06 7.09E-06 7.04E-06 1.63E-07

AUC 1.01E-06 2.36E-06 7.59E-06 1.21E-07

Autonomous Robot Navigation Using Moth-Flame-Based Neuroevolution 79

Fig. 6 MSE average
convergence curves for
different evolutionary
optimizers

10 20 30 40 50 60 70 80 90 100
−3.2

−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

Mobile Robot Dataset

Iteration

A
ve

ra
ge

 M
SE

 (
lo

g
sc

al
e)

MFO
PSO
GWO
MVO
CS

greater than other EAs in the experiment. These findings again justify that obtained
results are not achieved by chance and show the robustness of MFO for the training
of MLP neural networks.

The average convergence curves for all EAs over 100 iterations are demonstrated
in Fig. 6. This figure shows that MFO has the fastest convergence speed for finding
the global optimum.

In summary, the experimental results obtained in this section imply that MFO-
based trainer has a better efficiency in comparison with other EAs employed.

4.2 Comparison with Gradient-Based Algorithms

This section verifies the performance of MFO in comparison with two well-regarded
gradient-based techniques including back-propagation (BP) and Levenberg–
Marquardt (LM) based on classification accuracy, AUC, and T-test evaluation met-
rics. In fact, this comparison is important because it reveals that this study does not
only consider the comparison of proposed MFO-MLP-based trainer with other well-
known evolutionary optimization algorithms, which are from its own type, but also
makes a comparison with gradient descent algorithms which are able to challenge
the performance of MFO.

The results of the average, best value, and standard deviation of accuracy and
AUC of gradient decent algorithms for 30 different runs are presented in Table5.

It can be seen that MFO obtains the highest average value of accuracy and AUC
in comparison with BP and LM. Moreover, the lowest standard deviation values for
accuracy and AUC are denoted to theMFO-MLP. It is worth mentioning that LM and
BP obtain the higher standard deviation values in comparison with other EAs (PSO,

80 S. M. J. Jalali et al.

Table 5 Evaluation metrics of MFO-based MLP trainer with BP and LM for mobile robot dataset

Algorithm Metric Accuracy AUC

MFO AVG 0.944027 0.910519
STD 0.022473 0.034488
Best 0.954555 0.943893

BP AVG 0.754194 0.76631

STD 0.10873 0.117588

Best 0.916274 0.929898

LM AVG 0.802111 0.775844

STD 0.100069 0.124485

Best 0.894844 0.903664

MFO BP LM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Algorithms

C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y
re

su
lts

Fig. 7 Boxplot representation of the accuracy for MFO, BP and LM

CS, and MVO) except GWO that has been analyzed in the previous subsection.
The boxplots for the results of accuracy and AUC are illustrated in Figs. 7 and 8,
respectively. These plots clearly demonstrate that the MFO-MLP obtains the highest
average of accuracy and AUC as well the most compact boxes. These results support
the claim that MFO optimizer performs more robust and stable in training of MLP
networks. It can be noted that the widest range of boxplots in BP and LM shows
that these approaches have a tendency to be trapped into the local optima. Finally,
in Table6, two T-tests greater than experiments are conducted for accuracy and
AUC evaluation metrics to statistically confirm that whether there are considerable
differences among MFO and two other gradient descent algorithms. The p-values
indicate that MFO has a significant difference with both BP and LM substantially,
and its average is always greater than both of BP and LM.

Autonomous Robot Navigation Using Moth-Flame-Based Neuroevolution 81

Fig. 8 Boxplot
representation of the AUC
for MFO, BP and LM

MFO BP LM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Algorithms

C
la

ss
if

ic
at

io
n

A
U

C
 r

es
ul

ts
Table 6 Obtained p-values of the T-test for MFO and both gradient descent algorithms

Algorithm/Metric BP LM

Accuracy 2.47E-05 4.10E-05

AUC 7.04E-05 1.83E-04

5 Discussion of Results

In summary, the experimental results confirmed that the MFO-based trainer is not
only able to outperform the evolutionary optimizers but also the gradient-based algo-
rithms in terms of both avoidance of trapping into the local optima and convergence
speed. The local optima stagnation in this algorithm is higher than other EAmethods
applied in this paper since moths assign a flame over the course of iteration, and this
procedure leads to high exploration of the search space. This characteristic is the
main reason for the better performance of MFO in comparison with other EAs.

Another interesting and important finding should be mentioned here is the capa-
bility of higher convergence speed of MFO in training MLP networks. This charac-
teristic originates from the consideration of the promising solutions by the flames
acting as the guides for each moth. This is one of the reasons why the results of MFO
are superior and robust with other utilized EAs.

Comparing the capability of training MLPs using MFO with two of the most
well-regarded methods from the family of gradient-based algorithms including BP
and LM presents substantial findings. The results show that training MLP suing BP
and LM allows the solutions to bend downward to the deepest steep. This mechanism
is the reason why both algorithms suffer from getting stuck into the local optima. As
MFO is a stochastic population-based optimizer and structure of this evolutionary

82 S. M. J. Jalali et al.

optimization leads to unexpected changes in the weights and biases ofMLP network,
it benefits from both local optima avoidance and higher exploration for the search
space of the problem. Also, in most of the EAs, their performance is higher than
both gradient descents used in this work. This is the main reason why we developed
evolutionary algorithms for this robot navigation.

In overall, MFO outperformed all the other methods used in this book chapter,
showing that its robustness in training of the problem of navigation for a mobile
robot as a powerful black-box tool.

6 Conclusion and Future Directions

In this chapter, an attempt ismade to employ of the recently proposedMFOoptimizer
in order to train MLP networks based on an autonomous navigation robot dataset.
Since the problem of navigation in robots is a challenging task, MFO is utilized as
a robust optimization algorithm to find the optimal weights and biases for obtaining
more accurate navigation results with minimum error criteria (MSE). To show the
higher capability of MFO in obtaining the most accurate and robust results, a series
of experiments are performed using the well-regarded evaluation metrics: accuracy,
AUC, and T-test. MFO is then compared with different bio-inspired evolutionary
algorithms and gradient descent approaches. The findings report thatMFO is strongly
handling the problem of local optima avoidance alongside a fair-minded convergence
speed when MLP network is trained. Besides, this algorithm shows its stability in
providing the highest accurate results compared to other approaches used in this
study.

Future works can investigate the framework used in this study for other mobile
robot navigation datasets. Another suggestion can be using the employed EAs in this
work and compare them with other types of neural networks such as radial basis
function networks for similar datasets.

References

1. Cao W, Wang X, Ming Z, Gao J (2018) A review on neural networks with random weights.
Neurocomputing 275:278–287

2. da Silva IN, Hernane Spatti D, Andrade Flauzino R, Liboni LHB, dos Reis Alves SF (2017)
Artificial neural networks. Springer, Heidelberg

3. da Silva Assis L, da Silva Soares A, José Coelho C, Van Baalen J (2016) An evolutionary
algorithm for autonomous robot navigation. Proc Comput Sci 80:2261–2265

4. Dash T, Nayak T, Ranjan Swain R (2015) Controlling wall following robot navigation based on
gravitational search and feed forward neural network. In: Proceedings of the 2nd international
conference on perception and machine intelligence. ACM, pp 196–200

5. Faris H, Aljarah I, Mirjalili S (2016) Training feedforward neural networks using multi-verse
optimizer for binary classification problems. Appl Intell 45(2):322–332

6. Haykin S (1994) Neural networks, vol 2. Prentice Hall, New York

Autonomous Robot Navigation Using Moth-Flame-Based Neuroevolution 83

7. Heidari AA, Faris H, Aljarah I, Mirjalili S (2018) An efficient hybrid multilayer perceptron
neural network with grasshopper optimization. Soft Comput 1–18

8. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimiza-
tion: algorithm and applications. Future Gener Comput Syst 97:849–872

9. Jordanov IN, Rafik TA (2004) Local minima free neural network learning. In: 2004 2nd in-
ternational IEEE conference on ‘Intelligent Systems’. Proceedings (IEEE Cat. No. 04EX791),
vol 1. IEEE, pp 34–39

10. Kennedy J (2010) Particle swarm optimization. Encyclopedia of machine learning, pp 760–766
11. Madi S, Baba-Ali R (2018) Classification techniques for wall-following robot navigation: a

comparative study. In: International conference on advanced intelligent systems and informat-
ics. Springer, Heidelberg, pp 98–107

12. Mirjalili S (2015) How effective is the grey wolf optimizer in training multi-layer perceptrons.
Appl Intell 43(1):150–161

13. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic
paradigm. Knowledge-Based Syst 89:228–249

14. Mirjalili S (2016)Dragonfly algorithm: a newmeta-heuristic optimization technique for solving
single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–
1073

15. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm
algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–
191

16. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67
17. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61
18. Mirjalili S, Mirjalili SM, Lewis A (2014) Let a biogeography-based optimizer train your multi-

layer perceptron. Inf Sci 269:188–209
19. Mirjalili S, Saremi S, Mirjalili SM, Coelho LS (2016) Multi-objective grey wolf optimizer: a

novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119
20. Reeves C, Rowe JE (2002) Genetic algorithms: principles and perspectives: a guide to GA

theory, vol 20. Springer Science & Business Media
21. Shabbir J, Anwer T (2018) A survey of deep learning techniques for mobile robot applications.

arXiv preprint arXiv:1803.07608
22. Song B, Wang Z, Zou L (2017) On global smooth path planning for mobile robots using a

novel multimodal delayed pso algorithm. Cogn Comput 9(1):5–17
23. Souza F, Matias T, Araójo R (2011) Co-evolutionary genetic multilayer perceptron for feature

selection and model design. In: 2011 IEEE 16th conference on Emerging Technologies &
Factory Automation (ETFA), IEEE, pp 1–7

24. Wessels LFA, Barnard E (1992) Avoiding false local minima by proper initialization of con-
nections. IEEE Trans Neural Netw 3(6):899–905

25. Wolpert DH, MacreadyWG (1997) No free lunch theorems for optimization. IEEE Trans Evol
Comput 1(1):67–82

26. Xu Y, Chen H, Heidari AA, Luo J, Zhang Q, Zhao X, Li C (2019) An efficient chaotic mutative
moth-flame-inspired optimizer for global optimization tasks. Expert Syst Appl 129:135 – 155

27. Yamany W, Fawzy M, Tharwat A, Hassanien AE (2015) Moth-flame optimization for train-
ing multi-layer perceptrons. In: 2015 11th International Computer Engineering Conference
(ICENCO), IEEE, pp 267–272

28. Yang X-S, Deb S (2009) Cuckoo search via lévy flights. In: 2009 World Congress on Nature
& Biologically Inspired Computing (NaBIC), IEEE, pp 210–214

http://arxiv.org/abs/1803.07608

Link Prediction Using Evolutionary
Neural Network Models

Rawan I. Yaghi, Hossam Faris, Ibrahim Aljarah, Ala’ M. Al-Zoubi,
Ali Asghar Heidari and Seyedali Mirjalili

Abstract Link prediction aims to represent the dynamic networks’ relationships of
the real world in a model for predicting future links or relationships. This model can
help in understanding the evolution of interactions and relationships between network
members. Many applications use link prediction such as recommendation systems.
Most of the existing link prediction algorithms are based on similarity measures,
such as common neighbors and the Adamic/Adar index. The main disadvantage of
these algorithms is the low accuracy of results since they depend on the application
domain. Moreover, the datasets of link prediction have two significant problems:
the imbalanced class distribution and the large size of the data. In this chapter,
evolutionary neural network-basedmodels are developed to solve this problem.Three
optimizers are used for training feedforward neural networkmodels including genetic

R. I. Yaghi · H. Faris · I. Aljarah · A. M. Al-Zoubi
King Abdullah II School for Information Technology,
The University of Jordan, Amman, Jordan
e-mail: rawanyaghi1993@gmail.com

H. Faris
e-mail: hossam.faris@ju.edu.jo

I. Aljarah
e-mail: i.aljarah@ju.edu.jo

A. M. Al-Zoubi
e-mail: alaah14@gmail.com

A. A. Heidari
School of Surveying and Geospatial Engineering, College of Engineering,
University of Tehran, Tehran, Iran
e-mail: as_heidari@ut.ac.ir; aliasgha@comp.nus.edu.sg; t0917038@u.nus.edu

A. A. Heidari
Department of Computer Science, School of Computing,
National University of Singapore, Singapore, Singapore

S. Mirjalili (B)
Torrens University Australia,
Fortitude Valley, Brisbane, QLD 4006, Australia
e-mail: ali.mirjalili@gmail.com

Griffith University, Brisbane, QLD 4111, Australia

© Springer Nature Singapore Pte Ltd. 2020
S. Mirjalili et al. (eds.), Evolutionary Machine Learning Techniques,
Algorithms for Intelligent Systems, https://doi.org/10.1007/978-981-32-9990-0_6

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-32-9990-0_6&domain=pdf
mailto:rawanyaghi1993@gmail.com
mailto:hossam.faris@ju.edu.jo
mailto:i.aljarah@ju.edu.jo
mailto:alaah14@gmail.com
mailto:as_heidari@ut.ac.ir; aliasgha@comp.nus.edu.sg; t0917038@u.nus.edu
mailto:ali.mirjalili@gmail.com
https://doi.org/10.1007/978-981-32-9990-0_6

86 R. I. Yaghi et al.

algorithm, particle swarm optimization, and moth search. For this purpose, the link
prediction problem is formulated as a classification problem to improve the accuracy
of the results by constructing features of the traditional link prediction methods and
centrality measures in any given link prediction dataset. Also, this work tries to
address two problems of the data in two ways: externally using sampling techniques
(random and undersampling) and internally using the geometric mean as a fitness
function in the proposed algorithms. The results reveal that the proposed model is
superior in terms of the sensitivity and geometric mean measures compared to the
traditional classifiers and traditional link prediction algorithms.

Keywords Algorithm · Optimization · Neural networks · Artificial intelligence ·
Machine learning · Data science

1 Introduction

Social communities and networks have recently attracted researchers’ attention to
understand social organizational structures by simplifying representations of real-
world relationships [3, 4, 34]. The structure of these networks and communities
consists of nodes and links, where nodes represent network entities, such as people,
and are joined together by links which represent the correlations and associations
between nodes. The properties of networks can be studied using concepts from
network science, the aim of which is to understand the structure and evolution of
complex network systems. One of the most important properties of these networks
is its dynamic change over time. For example, in the Facebook social network,
whenever a new user adds another as a friend, the network structure changes, and
new link is added to the network to establish the new friendship; conversely, when
a user removes a friend, a link is removed from the network [40]. Change over time
is the key concept of dynamic networks, but leads to several questions:

• How do correlations and associations between nodes change over time in a net-
work?

• How are the correlations and associations between two nodes influenced by other
nodes in the same network?

• What features are responsible for the changing correlations and associations be-
tween nodes in a network?

These questions can be resolved by predicting the likelihood of future associa-
tions between two nodes in a network, which is called the link prediction problem.
Link prediction is a major task in network analysis, especially in social networks.
Moreover, due to the increasing use of networks, link prediction can help improve
network performance by predicting the associations and correlation between users
in a satisfying way. Many applications have utilized link prediction, such as social
media [20], e-commerce [11], physics [13, 38], and citation networks [42].

Link Prediction Using Evolutionary Neural Network Models 87

Predicting the links between network nodes or social communities helps in under-
standing network associations, and the significant role they play in network science.
Moreover, link prediction is used to know which interactions and correlations be-
tween entities will soon be established or removed. For example, in information
retrieval, it can be used to predict links between words and documents within bipar-
tite networks which represent word occurrence [12].

Traditional link prediction methods, such as common neighbors (CN) [33], the
Jaccard index [25], and the Adamic/Adar index [1], are similarity-based methods.
Each method has its advantages and disadvantages. For example, one major disad-
vantage of CN is that it assigns high similarity values to two nodes if they have
many shared neighbors [33]. The Adamic/Adar index addresses this shortcoming by
giving higher weight to less-connected neighbors [1]. The Adamic/Adar index’s em-
phasis on paired nodes with rarely shared neighbors is considered an advantage when
used in networks such as personal home pages. However, it produces poor results in
co-authorship networks, which is one of its disadvantages [17]. The preferential at-
tachment has two disadvantages: first, the similarity between two nodes depends only
on their connectivity, which gives high similarity values to highly connected nodes.
Second, maximization of network connectivity occurs when creating many links be-
tween all pairs of nodes with neighbors [8, 19]. Each of these methods excels in
specific domains and gets poor results in others. For example, the Jaccard index per-
forms well in IR applications and obtains lower-accuracy results in other cases [12].

In this work, links are predicted by constructing features with traditional link
prediction methods and using centrality measures in each link prediction dataset to
serve as input to a classification model. Then, the prepared datasets are classified
using evolutionary multilayer perceptron (MLP) networks, which are optimized by
algorithms such as moth search (MS), genetic algorithms (GAs), and particle swarm
optimization (PSO).

The objective of thiswork is to overcome theweaknesses of traditional link predic-
tion methods. In more details, this work formulates link prediction as a classification
problem by constructing features using traditional link prediction methods and cal-
culating centrality measures in the dataset, where each method represents a feature
and each row represents a possible edge, with features and class label in an undi-
rected graph of a given dataset. On the other hand, link prediction datasets are often
large and imbalanced; we apply random sampling and undersampling techniques
to the prepared datasets to solve these problems. Then, evolutionary MLP models
are developed based on these processed datasets by utilizing three nature-inspired
algorithms for training the neural network models which are: moth search (MS), ge-
netic algorithms (GAs), and particle swarm optimization (PSO). The performance of
the developed evolutionary-based models is compared to common classifiers which
include decision trees (DT), support vector machine (SVM), multilayer perceptron
(MLP), and naiv̈e Bayes (NB) algorithms.

The rest of this chapter is organized as follows: Sect. 2 represents the previous
works of the Link prediction. Section 3 describes the background of the utilized
methods, while Sect. 4 introduced the approach of this work. Section 5 explains the
experiments and obtained results and the conclusion presented in Sect. 6.

88 R. I. Yaghi et al.

2 Literature Review

Link prediction is a popular data mining task in various application domains and has
attracted attention in recent years. This section discusses briefly the recent progress
about link prediction methods.

Link prediction methods can be divided into two major types: supervised and
unsupervised methods. The authors in [43] proposed a new collective classification
approach for predicting the existence and the type of links between entities in rela-
tional domains, they applied the relational Markov network framework to define a
model of joint probabilistic of links in the graph and entity attributes. The work in [2]
proposed a supervised link prediction method by identifying a set of features, which
are topological features such as the shortest distance between the two nodes: seman-
tic features such as the number of matching keywords and aggregated features such
as the summation of common neighbors. They used the well-known classification
algorithms (k-NN, multilayer perceptron, RBF network, decision tree, and SVM),
and they found out that SVM slightly outperformed others classification algorithms
using different evaluation measures (accuracy, precision–recall, F-values, squared
error).

In addition, [47] used supervised link prediction methods in a metabolic network
based on the integration between genomic and chemical data. Themetabolic network
is a type of protein network that consists of enzymes and chemical compounds. It
focused on enzyme relationships, where enzymes represent nodes and enzyme to
enzyme relations represent edges. In contrast, [29] proposed a novel unsupervised
learning algorithm to predict links by using aggregative statistics. Aggregative statis-
tics are used in their proposed algorithm to learn the parameters of unseen-type links
and then predict the links based on the learned parameters.

Researchers in [31] used supervised or unsupervised methods and mentioned
the advantages of both. They presented a supervised framework for link prediction,
taking into consideration the following issues: an observational period of the network,
existing methods generality, imbalance degrees, variance reduction, and sampling
approaches. In addition, considering the previous issues, they proposed a flow-based
predicting algorithm, and the results outperformed unsupervised link prediction by
using the area under curve (AUC) as a performance evaluation by more than 30%.

Other researchers proposed different models for link prediction.
Liben-Nowell andKleinberg [30] provided several mathematical methods for link

prediction based on proximity measures for large networks of scientific collabora-
tion (co-authorship networks). The mathematical methods were divided into three
categories: The first one is based on node neighborhood, the second is based on the
ensemble of all paths, and the third is “higher-level” approaches, which combine
between the two previous methods. In addition, Murata and Moriyasu [35] proposed
methods for link prediction based on weighted proximity measures. These methods
consist of both the weights of the existing links in a social network and proximi-
ty measures of the graph. Moreover, Wang et al. [44] proposed a model based on
machine learning called novel local probabilistic graphical model. The model was

Link Prediction Using Evolutionary Neural Network Models 89

used for estimating the joint co-occurrence probability of two nodes by scaling the
large graphs. On the other hand, Liben-Nowell and Kleinberg [30] proposed the fea-
tures using methods based on the contents of interactions or based on attributes of
interactions. In addition, [41] used semantic similarity methods as features for the
link prediction problem since these methods give accurate predictors of friendship
links. Moreover, Chen and Chen [10] used ant colony optimization to provide a new
method of link prediction.

3 Preliminaries

This section gives a brief background of the main concepts used in this work: link
prediction, standard classification algorithms, and metaheuristic algorithms.

3.1 Multilayer Perceptron Networks (MLP)

Artificial neural networks (ANNs) are a kind of logical models developed based
on biological neural systems which are used to approximate functions from many
inputs. ANNs can be presented as a collection of interconnected processing elements,
called “neurons,” which exchange numeric weights. A common example of an ANN
is the MLP. In MLP, neurons are distributed over multiple directed layers, like nodes
in a directed graph. MLPs have proven several benefits including parallelism and
generalization powers [7].

Figure 1 illustrates a simple MLP with only one hidden layer. In MLP, we should
use a summation function as:

Fig. 1 Simple artificial
neural network architecture

90 R. I. Yaghi et al.

Sj =
n∑

i=1

wi j Ii + β j (1)

where Ii is the input value of neurons in the input layer, wi j is the connection weight
connecting Ii to neuron j , β j is a bias weight and n is the number of inputs. Results
of this function will be inserted to the activation function. Usually, the activation
function is nonlinear. Example of such a function is sigmoid, which is calculated as
in Eq. 2.

f (x) = 1

1 + e−x
(2)

Hence, we have:

yi = f j

(
n∑

i=1

wi j Ii + β j

)
(3)

yi is output of neuron j . The input of the activation function is the output of the
summation function, whereas the output of the activation function is considered as
the output of neuron j , which is also the weight that connects neuron j with the
neurons in the next layer. When an ANN model is created, a training algorithm is
applied to optimize its parameters (set of weights). These weights are optimized to
approximate the results.

One of the principal factors affecting the results and efficacy of ANNs is the
learningmethodutilized for trainingof the network.Thegoal of the training algorithm
is to find the best set of weights to connect the processing elements of the network
and to minimize some error criterion. We can use both gradient-based and stochastic
methods for this purpose. The backpropagation algorithm is classified as a gradient-
based technique [15, 22]. Backpropagation has two steps: the forward pass, which
is meant to predict the output class label from the input data, and the backward pass,
which propagates back the cost function.

In contrast, stochastic searchmethods rely on randomness. The advantage of these
search methods is their ability to search for the global optimum rather than a local
one [18]. However, their main drawback is the computation time.

3.2 Evolutionary and Swarm-Based Optimizers

The majority of evolutionary algorithms come from the behavior of creatures in
natural or biological systems like GAs, PSO, and their variations. These algorithms
are becoming dominant methods in solving various kinds of complex optimization
problems [18, 24, 39]. The following subsections describe the algorithms used in
the proposed models.

Link Prediction Using Evolutionary Neural Network Models 91

3.2.1 Genetic Algorithm (GA)

GA is an evolutionary algorithm inspired by Darwin’s theory of natural selection and
genetics in biological systems. GAs are used to discover the optimal solution from
candidate solutions. The set of solutions is called a population and each solution is
called a chromosome. GA discovers the optimal solution after a chain of iterative
computations based on principles of evolution. The key computation phases in GAs
are selection, crossover, and mutation. In selection, the individuals with the best
fitness values are selected for use in GA operations. Crossover obtains new solutions
by randomly exchanging genes between two selected chromosomes. There are three
common types of crossover: one-point, two-point, and homologous. In mutation, a
gene in one chromosome is randomly changed from 0 to 1 or vice versa. Through
offspring, the old population is replaced using elitism or diversity strategies.

In the evolution step, the GA uses a fitness function to evaluate the quality of each
candidate solution after passing the computations in each iteration of the algorithm
until it reaches the end of iterations or meets a termination condition [14, 21].

3.2.2 Particle Swarm Optimization (PSO)

PSO is a metaheuristic inspired by bird flocking or fish schooling social behavior
when trying to find an optimal food source. PSO was first introduced by Eberhart
and Kennedy [16]. The current location of each bird is the best location of food
that the bird finds. Additionally, the best location of food that any bird of the flock
finds is controlled by the bird’s movement. PSO is used to find optimal solutions
using a group of particles. The group of particles is called a swarm and represents
the population [6, 26, 27]. Each particle evaluates its location based on a fitness
function and updates its speed (movement or velocity) by tracking two values in
each iteration: the personal best (the optimal position that the particle has found)
and the global best (the optimal position achieved by all particles). There are also
some constants and particles inertia that affect the particle movement. However, the
movement of all particles (the whole swarm) is directed toward the optimal global
solution, until the maximum number of iterations is reached.

PSO uses the following equation to update particles’s locations:

Li (t + 1) = Li (n) + Si (n + 1) (4)

where Li is the location of particle i , n is the iteration number and Si is the speed of
particle i . Each particle’s speed calculated by the following equation:

Si (n + 1) = W · Si (n) + c2 · r2 · [LPi − Li (n)] + c2 · r2 · [LG − Li (n)] (5)

92 R. I. Yaghi et al.

LPi is the current best location of particle i . LG is the current best global location
of the whole swarm, W is inertia weight, r1 and r2 are random numbers between 0,
and 1 and c1 and c2 are constant factors.

3.2.3 Moth Search Algorithm (MS)

MS is a recent metaheuristic algorithm which is inspired by phototaxis of moths
[45].1 MS models the phototaxic and flight behaviors of moths in nature. Moths
instinctively tend to adjust their flight direction as much as possible to move toward
a light source. Conversely, the function of Levy flight can be expressed by:

L(s) ∼ |S|−β (6)

where L(s) is the space drawn from the Levy distribution, S is the space, and β is
an index in the range [1, 3].

TheMS algorithm optimizes a known function using the exploration and exploita-
tion operations based on the phototaxis of moths. In this method, Levy flights are
used to update the moth’s positions; for moth i , position can be updated as shown in
the following equation.

xt+1
i = xti + αL(s) (7)

where xt+1
i and xti are represent the new and base location at generation t , and t + 1

is the current generation and parameter α is the scale factor.
To fly straight, some moths that are distant from a light source which will fly in a

line toward it, a process that can be described as:

xt+1
i = λ × (

xti + φ × (
xtbest − xti

))
(8)

where xtbest represents the best moth at generation t , φ represents an acceleration
factor, and λ is a scale factor. In contrast, the solution may move toward a destination
target that is beyond the best agent; this case can be described as:

xt+1
i = λ ×

(
xti + 1

φ
× (

xtbest − xti
))

(9)

1MATLAB code of MS is available at: https://www.mathworks.com/matlabcentral/fileexchange/
59010-moth-search-ms-algorithm.

https://www.mathworks.com/matlabcentral/fileexchange/59010-moth-search-ms-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/59010-moth-search-ms-algorithm

Link Prediction Using Evolutionary Neural Network Models 93

4 Methodology

This section describes the research methodology processes followed in this work.
The four major processes in the research methodology are data collection, data pre-
processing, model development, and model evaluation. In the following, each of the
processes is described in details.

4.1 Data Collection and Preparation

The data under investigation in this work represent undirected graphs. The data were
collected at two different time-stamps: t and t + 1, where the graph obtained at time
t is used for training the classification model and the graph obtained at time t + 1
is for testing the trained model. Five benchmark datasets are selected from different
networks’ domains. Table 1 represents the number of nodes (|V |), edges (|E |), and
the domain of each dataset. Moreover, the table shows the ratio between nodes and
edges.

Each dataset is preprocessed using four sub-processes methods which are for-
matting the datasets, features extraction, normalization, and sampling. These sub-
processes are described as follows.
Dataset’s preparation: This phase aims at preparing the datasets in an appropriate
format to be applied for the link prediction problem, which will be the matrix format
(adjacencymatrix). The rows and columns in the matrix represent the name of nodes.
The matrix entries represent binary digits 1 or 0 based on the existence of the link
between two nodes in specific row and column, where 1 represents the existence of a
link between two nodes, and 0 represents the absence of the link. Figure 2 is a simple
example of an adjacency matrix format and its corresponding graph.
Extracting the features: This phase aims at preparing the link prediction bench-
mark datasets by extracting features using similarity and centrality measures. The

Table 1 Dataset’s description

Dataset name |V | |E | Ratio (%) Domain

BUP 105 441 24 Political blogs
network

CEG 297 2148 14 Biological
network

UAL 332 2126 16 Airport traffic
network

INF 410 2765 15 Face-to-face
contacts network

SMG 1024 4916 21 Co-authorship
network

94 R. I. Yaghi et al.

Fig. 2 Adjacency matrix
and its corresponding graph

Table 2 Link prediction
features

Feature number Feature name

F1 Common neighbors

F2 Adamic/Adar

F3 Jaccard

F4 Salton

F5 Preferential attachment

F6 Leicht-Holme-Newman

F7 Hub depressed

F8 Hub promoted

F9 Sørensen index

F10 Degree centrality

F11 Closeness centrality

extraction is performed on any possible edge using the similarities and centrality
measures that are mentioned in Table 2.

In this work, eleven features will be extracted, which are 9 similaritymeasures and
other 2 centrality measures. The reasons behind using these similarity measures are
because each of them is doing well in different domains, and overcoming the short-
ages of using each one alone. Moreover, degree centrality and closeness centrality
measures are used to enhance the importance of a given edge that will be predict-
ed by quantifying the importance of two nodes of a given edge. The probability of
predicting the important links will be increased by quantifying the edge centrality
measures.

Centrality measures represent the influence and the importance of a node in a
network that depends on the relations between nodes. Centrality measures of nodes
can be used to measure the node’s significance and to determine which nodes are
distinguished. The most popular centrality measures are degree, closeness, and be-
tweenness [32]. Degree centrality and closeness centrality are used in this work.

Node degree centrality (DC): node degree refers to the number of relations or
direct connections (links)with other nodeswhich is equal to the neighbors of the node
in an undirected graph. If the number of the links of node increases, the significance

Link Prediction Using Evolutionary Neural Network Models 95

of node will be increased. It is a very effective measure because it can define the
importance for each node alone; hence if two nodes have many connected links with
other nodes in the network, they are more likely to be connected by link [32, 46].
DC is defined in Eq. 10.

DC = deg(x1) + deg(x2)

2
(10)

where deg(x1) denote the degree of node x1.
Node closeness centrality (CC) measures the distances between a node and all

other nodes in the network. If a node can access most of the other nodes through less
distance pathway, the significance of this node will be increased. Some nodes are
being connected by a large number of nodes while they are disconnected from the
whole network. In this situation, degree measure is not enough because it does not
take into consideration the links with all other nodes which can give an important
indication of the node significance. Therefore, this centrality measure can overcome
this situation [32, 46]. It is defined in Eq. 11, where d(x1, y) denotes the shortest
distance between node x1 and all other nodes y.

CC =
(N−1∑

y d(x1,y)
) + N−1∑

y d(x2,y)

2
(11)

After the measures are applied on the datasets and the features are extracted, each
column in each dataset represents a link prediction feature except the last column,
which represents the class label for each edge. If it exists, the class label equals 1, if
not, the class labels equal 0. The rows represent all possible edges with their features
and their class labels.
Normalizing the datasets: After extracting the features, the datasets are normalized.
Normalization is one of the most important preprocessing techniques. It helps in
scaling the dataset attributes to fit into a specific and unified range. There are different
kinds of normalization such as decimal scaling and Min–Max normalization [36].
In this work, the Min–Max normalization is used to scale the data to [0, 1]. The
following equation represents the Min–Max normalization which transfers a value
x to z which fits in the new range.

z = x − minA

maxA −minA
× (new_maxA − new_minA) + new_minA (12)

where themaxA andminA refers to the initial range and new_maxA and new_minA

refers to the new range.

Sampling the datasets: In general, link prediction datasets are imbalanced datasets,
where the number of instances in nonexistent links’ class is more than the number of
instances in-existent links’ class. This work deals with the distribution of the imbal-

96 R. I. Yaghi et al.

anced dataset of link prediction to avoid the poor performance based on two different
levels. The first one is by using sampling techniques: random and undersampling.

Sampling techniques are also used to handle the size problem of link prediction
dataset since the large graphs consume more time and computation. Sampling tech-
niques extract a sample subgraph with fewer nodes and edges than the full-graph.
Thus, the performance in terms of running time will be improved. These sampling
techniques are used in the model development and compared to the main approach,
which is the full-graph approach. Thus, the model development in is performed using
three approaches, which are training based the full-graph, training based on a random
graph, and training based on an undersampling approach.

• The full-graph: This approach uses full-graph in training time. Since the full-
graph approach does not solve the problems of link prediction datasets which are,
as mentioned previously: the imbalanced dataset and the size problem, this ap-
proach is applied to benchmark the other approaches and to quantify their possible
improvements.

• Random graph: This approach selects a random graph from the whole training
graph. In this work, the number of nodes in the training graph is 100 nodes. The
chosen random graph is the one that has the largest number of links among all
possible random graphs.

• Undersampling: Undersampling is a technique used in data analysis to adjust the
distribution of classes in imbalanced datasets [9]. The random undersampling is
used only for the class of nonexistent links (class 0) in training datasets, where the
number of instances in this class is more than the instances in the class of existent
links (class 1). Five versions of each training dataset are created based on five
undersampling ratios. The ratio of each version will be the number of instances
in the class of existent links to the number of instances in the class of nonexistent
links (ones: zeros). In the first version, the number of instances in the class of
nonexistent links is equal to the instances in the class of existent links, thus the
percentage in this version is 1:1. In the second version, the numbers of instances in
class of nonexistent links are 2 multiplied by the instances in the class of existent
links; thus, the percentage in this version is 1:2 and so on for the rest of ratios.

4.2 Model Development

In this process, hybridmodels for link prediction datasets are proposed. The proposed
models are MLP neural networks optimized by different nature-inspired algorithms:
GA, PSO, and MS.

Nature-inspired algorithms are used to tune the MLP parameters (set of weight-
s). In training MLP, there are two important points that should be mentioned and
discussed; the first one is the encoding scheme of the candidate solutions, and the
second one is the fitness function.

Link Prediction Using Evolutionary Neural Network Models 97

W . . . W β . . .1,1 I,J W . . . W1 J β 1 J+1

Weights between Input
and Hidden layer

Weights between Hidden
and Output layer

W . . . W β . . .1,1 I,J W . . . W1 J β 1 J+1

Weights between Input
and Hidden layer

Weights between Hidden
and Output layer

Bias WeightsBias Weights

Fig. 3 Individual structure

The individuals are encoded as shown in Fig. 3, since a one hidden layer has good
generalization performance for most of the problems, only one hidden layer is used
to train the MLP. In this work, each individual should have the connection weights
between the input and the hidden layer, the connection weights between the hidden
layer and the output layer, and the bias weights. In each iteration, individuals are
assigned to an MLP and then the MLP is evaluated based on a training dataset. This
evaluation quantifies the fitness value of the network.

G-mean measure is used as a fitness function because it provides a balance of
accuracy of the two classes at the same time.G-mean has a property of the distribution
of instances between classes in an independent way. This property gives the G-mean
the robustness in circumstantial situations where the distribution between classes
changes over time or between the training and testing datasets [28]. G-mean can be
calculated for each individual from the confusion matrix. G-mean is defined as:

G-mean = √
Sensi tivi t y × Speci f ici t y (13)

Where sensitivity is the number of positive data instances that are correctly clas-
sified and divided by the number of the positive data instances (P), which is also
called true positive rate [5]. Sensitivity can be represented as given in Eq. 14.

Sensi tivi t y = T P

P
(14)

And specificity is the number of negative data instances that are correctly classified
and divided by the number of the negative data instances (P), which is also called
true negative rate. Specificity can be represented as given in Eq. 15.

Speci f ici t y = T N

N
(15)

The goal of the training algorithm is to maximize the G-mean value. Nature-
inspired algorithms: MS, GA, and PSO keep updating the individuals until the max-
imum number of iterations is met and is explained as the stopping criteria in this
work.

98 R. I. Yaghi et al.

As mentioned previously in the background section, GA has three operations to
update the candidate solutions which are selection, crossover, and mutation. PSO
updates the candidate solutions by tracking in each iteration two values which are
personal best and global best, while, MS updates the candidate solutions by using
phototaxis and Levy flights.

4.3 Model Evaluation

The trained neural networks are evaluated based on the testing dataset (the whole
testing graph) using the optimized weights which resulted from the training phase.
The evaluation of the neural networks is based on calculating the G-mean, sensitivity
and specificity values.

More attention will be given to the results of the sensitivity measurement because
there is a need to be concerned about whether or not the number of instances, in a
class of existent links, are correctly classified. In contrast, specificity is not required
to have outstanding results as in the case of the sensitivity, since this problem does
not focus on the class of nonexistent links. However, it is important to be sure that the
results of the sensitivity are not obtained without considering an acceptance results
of the specificity. Thus, this work also considers G-mean as an evaluation method to
have an acceptable balance between sensitivity and specificity.

The overall process of the proposed methodology in this work is illustrated as
shown in Fig. 4.

5 Experimental Results and Discussions

This section provides information about the experimental setups in details, and it
describes the results of the proposed algorithms based on three training approaches:
the full-graph approach, the random approach, and the undersampling approach.
This section discusses also the comparison between the proposed algorithms against
traditional classifiers and traditional link prediction methods.

5.1 Experiments Environment and Setup

For all experiments, R software is used to perform the feature extraction of link
prediction. The following packages are used in R software: igraph and ppiPre.2

Weka software version 3.8 is used to normalize the extracted datasets and to apply

2Interested readers refer to: (a) igraph: https://igraph.org/r/ (b) ppiPre: https://cran.r-project.org/
src/contrib/Archive/ppiPre/.

https://igraph.org/r/
https://cran.r-project.org/src/contrib/Archive/ppiPre/
https://cran.r-project.org/src/contrib/Archive/ppiPre/

Link Prediction Using Evolutionary Neural Network Models 99

Data collection and
preprocessing

end

Start

Training MLP

Optimization
process

Fitness function
evaluation (Gmean)

Termination
condition met? Optimized weights

Testing and
performance
evaluations

Training data Test data

No Yes

Fig. 4 Flowchart of the methodology

NB, DT, SVM algorithms [23, 28].3 MATLAB R2010b version 9.1.0.4 is used to
implement the following algorithms: MS-MLP, GA-MLP, PSO-MLP, and the tra-
ditional MLP which uses the backpropagation algorithm for training. In addition, a
laptop computer with the following features is used: Windows 10 64-bit, 16GB of
RAM, and Intel core i7.

3Readers may refer to (a) https://machinelearningmastery.com/how-to-run-your-first-classifier-in-
weka/ (b) NEO Group website at http://neo.lcc.uma.es.

https://machinelearningmastery.com/how-to-run-your-first-classifier-in-weka/
https://machinelearningmastery.com/how-to-run-your-first-classifier-in-weka/
http://neo.lcc.uma.es

100 R. I. Yaghi et al.

Table 3 Initial parameters of the metaheuristic optimizers

Algorithm Parameter Value

MS The number of kept moths 2

The index β 1.5

Max walk step 1

Acceleration factor 0.618

GA Population size 50

Crossover probability 1

Mutation probability 0.01

Selection 2

PSO Population size 50

Acceleration contacts [2.1, 2.1]

Inertia weights [0.9, 0.6]

Number of particles 50

5.2 Comparison of Evolutionary Neural Networks with
Traditional Classifiers

This section is divided into three subsections based on the used training approach; it
is either the full-graph approach is used for training, a random graph approach, or an
undersampling approach. Each subsection will present the results of the following
classification algorithms: MS-MLP, GA-MLP, PSO-MLP, MLP, NB, J48, SMO and
LibSVM, where SMO and LibSVM are two different implementations of SVM. In
addition, J48 is aDTdeveloped inWEKAas an implementation of the ID3 algorithm4

[37].
The parameters of the optimizers and classifiers are tuned empirically by selecting

the parameters that give the best results from specific ranges. The initial parameters
of MS, GA, and PSO are set as in Table 3 and the initial parameters of classification
algorithms are set as in Table 4.

5.2.1 Results Based on the Full-Graph Approach

In this section, the results of MLP models optimized by the nature-inspired algo-
rithms are evaluated and compared with other traditional classification algorithms
based using the full-graph data for training. Table 5 shows the average sensitivity,
specificity, andG-mean values of 10 independent runs for all classification algorithm-
s. The best average sensitivity and G-mean measures for each dataset are highlighted
in bold.

4Please refer to: http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html.

http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html

Link Prediction Using Evolutionary Neural Network Models 101

Table 4 Initial parameters of classifiers

Classifiers Parameter Value

J48 Confidence factor 0.25

Kernel function RBF

SVM Cost 53

Gamma 0.3

Hidden layer 1

MLP Neurons in the hidden layer 23

BP Learning rate 0.3

Momentum rate 0.2

The results show that MS-MLP had the highest sensitivity results in BUP, UAL,
and SMG datasets. In addition, MS-MLP had very competitive results in terms of
G-mean values. GA-MLP achieved best G-mean results in BUP, UAL and SMG.
It also reached good sensitivity results in all datasets except for CEG. PSO-MLP
comes next with competitive results in BUP, CEG, and SMG datasets. On the other
hand, the traditional classifiers had very poor results in terms of sensitivity and G-
mean measures. Based on the previous results, we can conclude that the MS-MLP
algorithm obtained favorable results compared to all other classification algorithms
especially in 3 out of 5 datasets which are BUP, UAL, and SMG.

5.2.2 Results Based on Random Graph Approach

This section discusses the results of the evolutionary-based MLP networks and com-
pares them to the other traditional classification algorithms based on training all
algorithms using the random graph approach. Table 6 shows the average sensitivity,
specificity, and G-mean of 10 independent runs for each dataset. The best average
for each dataset in sensitivity and G-mean measures is highlighted in bold.

The results show that MS-MLP, GA-MLP, and PSO-MLP models outperformed
all other classification algorithms in all benchmark datasets. MS-MLP obtained the
highest sensitivity results in 3 datasets which are BUP, INF, and SMG, and it achieved
the best G-mean in 3 datasets which are BUP, UAL, and INF. PSO-MLP achieved the
best results in only one dataset which is CEG. On the other hand, we can see that the
classical classification approaches performed poorly especially in terms of G-mean
results. In summary, MS-MLP algorithm shows superior performance in most of the
datasets compared to the other algorithms.

102 R. I. Yaghi et al.

Ta
bl
e
5

E
va
lu
at
io
n
m
ea
su
re
s
of

th
e
fu
ll-
gr
ap
h
ap
pr
oa
ch

fo
r
tr
ai
ni
ng

D
at
as
et
s

M
ea
su
re
s

M
S-
M
L
P

G
A
-M

L
P

PS
O
-M

L
P

M
L
P

N
B

SM
O

J4
8

L
ib
SV

M

B
U
P

Se
ns
iti
vi
ty

0.
71
24

0.
67
64

0.
58
99

0.
00
79

0.
07
9

0.
00
0

0.
03
4

0.
00
0

Sp
ec
ifi
ci
ty

0.
50
00

0.
53
67

0.
56
03

0.
98
57

0.
94
80

0.
99
90

0.
97
50

0.
99
90

G
-m

ea
n

0.
56
48

0.
58
8

0.
54
59

0.
03
91
0

0.
26
65

0.
00
00

0.
17
98

0.
00
00

C
E
G

Se
ns
iti
vi
ty

0.
41
28

0.
32
09

0.
51
74

0.
01
70

0.
15
89

0.
01
40

0.
12
80

0.
01
64

Sp
ec
ifi
ci
ty

0.
84
74

0.
91
71

0.
76
26

0.
99
08

0.
94
74

0.
99
87

0.
93
30

0.
99
86

G
-m

ea
n

0.
56
84

0.
53
40

0.
58
04

0.
07
47

0.
38
80

0.
11
83

0.
33
30

0.
12
78

U
A
L

Se
ns
iti
vi
ty

0.
71
8

0.
63
51

0.
58
99

0.
16
52

0.
41
88

0.
34
8

0.
12
80

0.
34
59

Sp
ec
ifi
ci
ty

0.
65
77

0.
81
66

0.
74
18

0.
94
47

0.
88
68

0.
96
20

0.
93
30

0.
96
19

G
-m

ea
n

0.
64
08

0.
69
64

0.
59
39

0.
24
24

0.
60
94

0.
57
86

0.
33
30

0.
57
68

IN
F

Se
ns
iti
vi
ty

0.
40
81

0.
42
91

0.
57
58

0.
02
50

0.
26
90

0.
03
80

0.
08
00

0.
03
80

Sp
ec
ifi
ci
ty

0.
78
66

0.
76
25

0.
58
08

0.
99
71

0.
97
20

0.
99
8

0.
99
60

0.
99
80

G
-m

ea
n

0.
46
79

0.
46
59

0.
42
36

0.
12
58

0.
50
41

0.
19
47

0.
28
17

0.
19
47

SM
G

Se
ns
iti
vi
ty

0.
82
20

0.
80
14

0.
82
80

0.
10
07

0.
10
5

0.
00
00

0.
13
80

0.
00
00

Sp
ec
ifi
ci
ty

0.
56
07

0.
57
27

0.
51
20

0.
89
95

0.
97
80

1.
00
00

0.
98
80

1.
00
00

G
-m

ea
n

0.
63
63

0.
63
81

0.
60
74

0.
01
56

0.
32
05

0.
00
00

0.
36
92

0.
00
00

Link Prediction Using Evolutionary Neural Network Models 103

Ta
bl
e
6

E
va
lu
at
io
n
m
ea
su
re
s
of

th
e
ra
nd
om

sa
m
pl
in
g
ap
pr
oa
ch

D
at
as
et

M
ea
su
re
s

M
S-
M
L
P

G
A
-M

L
P

PS
O
-M

L
P

M
L
P

N
B

SM
O

J4
8

L
ib
SV

M

B
U
P

Se
ns
iti
vi
ty

0.
53
93

0.
45
39

0.
28
99

0.
01
12

0.
07
90

0.
00
00

0.
00
00

0.
00
00

Sp
ec
ifi
ci
ty

0.
56
37

0.
63
33

0.
73
28

0.
98
65

0.
94
80

0.
99
80

0.
99
60

0.
99
80

G
-m

ea
n

0.
55
14

0.
44
28

0.
39
60

0.
06
46

0.
27
40

0.
00
00

0.
00
00

0.
00
00

C
E
G

Se
ns
iti
vi
ty

0.
14
47

0.
19
19

0.
19
88

0.
01
21

0.
07
40

0.
00
00

0.
00
00

0.
00
00

Sp
ec
ifi
ci
ty

0.
97
02

0.
96
03

0.
96
38

0.
99
57

0.
98
10

1.
00
00

1.
00
00

1.
00
00

G
-m

ea
n

0.
36
10

0.
42
16

0.
43
22

0.
04
96

0.
29
60

0.
00
00

0.
00
00

0.
00
00

U
A
L

Se
ns
iti
vi
ty

0.
60
05

0.
55
18

0.
69
72

0.
10
52

0.
33
40

0.
35
10

0.
60
90

0.
34
60

Sp
ec
ifi
ci
ty

0.
89
32

0.
90
46

0.
77
31

0.
89
61

0.
96
40

0.
96
10

0.
91
50

0.
96
20

G
-m

ea
n

0.
72
71

0.
70
11

0.
70
54

0.
04
76

0.
56
70

0.
58
10

0.
74
60

0.
57
70

IN
F

Se
ns
iti
vi
ty

0.
37
72

0.
28
08

0.
31
70

0.
01
14

0.
29
60

0.
11
50

0.
04
90

0.
01
10

Sp
ec
ifi
ci
ty

0.
85
25

0.
93
41

0.
88
93

0.
99
90

0.
91
50

0.
98
50

0.
99
50

0.
99
90

G
-m

ea
n

0.
51
80

0.
49
30

0.
51
51

0.
06
02

0.
52
00

0.
33
70

0.
22
10

0.
10
50

SM
G

Se
ns
iti
vi
ty

0.
42
28

0.
32
16

0.
28
26

0.
10
23

0.
10
00

0.
00
00

0.
11
10

0.
00
00

Sp
ec
ifi
ci
ty

0.
82
67

0.
96
12

0.
96
92

0.
89
63

0.
97
60

1.
00
00

0.
99
70

1.
00
00

G
-m

ea
n

0.
52
94

0.
55
40

0.
51
82

0.
03
74

0.
31
20

0.
00
00

0.
33
30

0.
00
00

104 R. I. Yaghi et al.

5.2.3 Results Based on Undersampling Approach

This section reports and discusses the results of the metaheuristic-based MLP net-
works and the other classical classifiers after training them on undersampled datasets
with different ratios. That is, the ratios of the major class to the minor class will be
1:1, 1:2, 1:3, 1:4, and 1:5. The best results based on the G-mean value is report-
ed for each algorithm along with its specificity, sensitivity, and their corresponding
undersampling ratio.

The results in Table 7 show that evolutionary neural networks are very competitive
to each other and with the decision tree algorithm J48. In addition, the results of the
neural networks show more stability across the datasets while the results of J48 are
more fluctuating. For example, it can be seen that J48 obtained very poor results for
CEG dataset.

5.3 Results based on the Comparison Between All Model
Development Approaches

This section discusses the results by comparing between all model development
approaches: the full-graph approach, the random graph approach, and the undersam-
pling approach. Based on the previous experimental results, Table 8 is constructed.
It can be noticed that the results of the full-graph and the undersampling method
are better than those of the random graph approach. It can be noticed also that the
results of the undersampling approach are slightly better than the full-graph ap-
proach. Taking into consideration, the reduction in computation time in the case of
the undersampling approach, this gives extra credit for this approach over the other
approaches.

Moreover, the second important point that should be considered when comparing
between allmodel development approaches is the running time of the training process
of the classification models. The running time of the training process is one of the
most challenging problems in link prediction problem due to the huge size of the
training datasets. The running time of the classification process for the three training
approaches is reported in Table 9.

It can be noticed that the full-graph approach consumed more time than other
approaches, especially when the size of datasets increases, such as in the case of
SMG dataset, which consumed around 11 hours more than the other approaches.
Thus, this work recommended using undersampling approach for two reasons: first it
lessen the problem of imbalanced class distribution and it improves the classification
results, and it significantly reduces the training time of the classification models.

Link Prediction Using Evolutionary Neural Network Models 105

Ta
bl
e
7

E
va
lu
at
io
n
m
ea
su
re
s
ba
se
d
on

th
e
be
st
un

de
rs
am

pl
in
g
ra
tio

s
fo
r
al
ld

at
as
et
s

D
at
a

E
vo
lu
tio

n
m
ea
su
re
s

M
S-
M
L
P

G
A
-M

L
P

PS
O
-M

L
P

M
L
P

N
B

SM
O

J4
8

L
ib
SV

M

B
U
P

Se
ns
iti
vi
ty

0.
69
10

0.
68
31

0.
53
15

0.
23
98

0.
13
59

0.
04
85

0.
55
06

0.
04
85

Sp
ec
ifi
ci
ty

0.
48
55

0.
47
00

0.
67
05

0.
83
33

0.
95
35

0.
96
06

0.
66
19

0.
95
81

G
-m

ea
n

0.
55
68

0.
53
83

0.
56
05

0.
28
53

0.
36
00

0.
21
59

0.
60
37

0.
21
57

R
at
io

1:
3

1:
3

1:
2

1:
1

1:
3

1:
3

1:
5

1:
3

C
E
G

Se
ns
iti
vi
ty

0.
48
67

0.
42
28

0.
43
40

0.
31
30

0.
15
48

0.
11
56

0.
08
49

0.
14
62

Sp
ec
ifi
ci
ty

0.
78
49

0.
86
36

0.
87
45

0.
80
41

0.
95
05

0.
95
37

0.
98
19

0.
96
24

G
-m

ea
n

0.
57
80

0.
59
04

0.
61
00

0.
35
56

0.
38
35

0.
33
63

0.
28
87

0.
37
65

R
at
io

1:
1

1:
1

1:
5

1:
2

1:
5

1:
4

1:
2

1:
4

U
A
L

Se
ns
iti
vi
ty

0.
68
05

0.
68
38

0.
75
76

0.
33
20

0.
41
98

0.
19
29

0.
76
65

0.
41
98

Sp
ec
ifi
ci
ty

0.
77
59

0.
79
33

0.
61
87

0.
85
16

0.
88
14

0.
97
10

0.
82
95

0.
94
63

G
-m

ea
n

0.
70
05

0.
72
04

0.
63
83

0.
34
42

0.
60
83

0.
43
28

0.
79
74

0.
63
03

R
at
io

1:
4

1:
2

1:
4

1:
3

1:
5

1:
1

1:
4

1:
2

IN
F

Se
ns
iti
vi
ty

0.
47
32

0.
36
67

0.
44
30

0.
50
49

0.
26
81

0.
26
22

0.
49
91

0.
23
91

Sp
ec
ifi
ci
ty

0.
42
64

0.
49
10

0.
52
93

0.
50
49

0.
51
06

0.
97
43

0.
73
26

0.
48
42

G
-m

ea
n

0.
70
05

0.
68
20

0.
63
83

0.
41
94

0.
60
58

0.
50
54

0.
60
47

0.
52
48

R
at
io

1:
4

1:
4

1:
4

1:
1

1:
4

1:
1

1:
1

1:
4

SM
G

Se
ns
iti
vi
ty

0.
67
18

0.
76
95

0.
72
26

0.
47
83

0.
34
20

0.
41
20

0.
79
30

0.
45
93

Sp
ec
ifi
ci
ty

0.
77
40

0.
73
24

0.
73
05

0.
68
16

0.
94
90

0.
95
40

0.
74
80

0.
93
92

G
-m

ea
n

0.
70
04

0.
73
24

0.
73
05

0.
38
59

0.
56
97

0.
62
69

0.
77
02

0.
65
68

R
at
io

1:
4

1:
5

1:
5

1:
1

1:
1

1:
1

1:
1

1:
2

106 R. I. Yaghi et al.

Ta
bl
e
8

E
va
lu
at
io
n
re
su
lts

of
ev
ol
ut
io
na
ry

ne
ur
al
ne
tw
or
ks

of
th
re
e
di
ff
er
en
tt
ra
in
in
g
ap
pr
oa
ch
es

A
pp
ro
ac
he
s

T
he

fu
ll-
gr
ap
h

R
an
do
m

gr
ap
h

U
nd
er
sa
m
pl
in
g

D
at
a

M
ea
su
re
s

M
S-
M
L
P

G
A
-M

L
P

PS
O
-M

L
P

M
S-
M
L
P

G
A
-M

L
P

PS
O
-M

L
P

M
S-
M
L
P

G
A
-M

L
P

PS
O
-M

L
P

B
U
P

Se
ns
iti
vi
ty

0.
71
24

0.
67
64

0.
58
99

0.
53
93

0.
45
39

0.
28
99

0.
69
10

0.
68
31

0.
53
15

Sp
ec
ifi
ci
ty

0.
50
00

0.
53
67

0.
56
03

0.
56
37

0.
63
33

0.
73
28

0.
48
55

0.
47
00

0.
67
05

G
-m

ea
n

0.
56
48

0.
58
80

0.
54
59

0.
55
14

0.
44
28

0.
39
60

0.
55
68

0.
53
83

0.
56
05

C
E
G

Se
ns
iti
vi
ty

0.
41
28

0.
32
09

0.
51
74

0.
14
47

0.
19
19

0.
19
88

0.
48
67

0.
42
28

0.
43
40

Sp
ec
ifi
ci
ty

0.
84
74

0.
91
71

0.
76
26

0.
97
02

0.
96
03

0.
96
38

0.
78
49

0.
86
36

0.
87
45

G
-m

ea
n

0.
56
84

0.
53
40

0.
58
04

0.
36
10

0.
42
16

0.
43
22

0.
57
80

0.
59
04

0.
61
00

U
A
L

Se
ns
iti
vi
ty

0.
71
80

0.
63
51

0.
58
99

0.
60
05

0.
55
18

0.
69
72

0.
68
05

0.
68
38

0.
75
76

Sp
ec
ifi
ci
ty

0.
65
77

0.
81
66

0.
74
18

0.
89
32

0.
90
46

0.
77
31

0.
77
59

0.
79
33

0.
61
87

G
-m

ea
n

0.
64
08

0.
69
64

0.
59
39

0.
72
71

0.
70
11

0.
70
54

0.
70
05

0.
72
04

0.
63
83

IN
F

Se
ns
iti
vi
ty

0.
40
81

0.
42
91

0.
57
58

0.
37
72

0.
28
08

0.
31
70

0.
47
32

0.
36
67

0.
44
30

Sp
ec
ifi
ci
ty

0.
78
66

0.
76
25

0.
58
08

0.
85
25

0.
93
41

0.
88
93

0.
42
64

0.
49
10

0.
52
93

G
-m

ea
n

0.
46
79

0.
46
59

0.
42
36

0.
51
80

0.
49
30

0.
51
51

0.
70
05

0.
68
20

0.
63
83

SM
G

Se
ns
iti
vi
ty

0.
82
20

0.
80
14

0.
82
80

0.
42
28

0.
32
16

0.
28
26

0.
67
18

0.
76
95

0.
72
26

Sp
ec
ifi
ci
ty

0.
56
07

0.
57
27

0.
51
20

0.
82
67

0.
96
12

0.
96
92

0.
77
40

0.
73
24

0.
73
05

G
-m

ea
n

0.
63
63

0.
63
81

0.
60
74

0.
52
94

0.
55
40

0.
51
82

0.
70
04

0.
73
24

0.
73
05

Link Prediction Using Evolutionary Neural Network Models 107

Table 9 Time evaluation of all approaches for all datasets

Dataset Approaches MS-MLP GA-MLP PSO-MLP

BUP The full-graph 2:44:00 2:41:50 2:45:50

Random graph 2:43:00 2:41:40 2:44:10

Undersampling 2:42:30 2:39:20 2:48:10

CEG The full-graph 3:29:20 3:27:50 3:32:10

Random graph 2:44:00 2:41:50 2:48:50

Undersampling 2:40:40 2:38:40 2:45:00

UAL The full-graph 3:36:30 3:36:30 3:46:00

Random graph 2:41:10 2:48:10 2:56:00

Undersampling 2:41:30 2:38:40 2:42:50

INF The full-graph 4:15:50 4:15:50 4:27:30

Random graph 2:45:10 2:41:30 2:53:30

Undersampling 2:45:20 2:40:40 2:46:00

SMG The full-graph 13:36:40 13:22:40 13:30:40

Random graph 2:40:50 2:41:20 2:42:40

Undersampling 2:46:10 2:45:20 2:51:30

5.4 Comparison with Traditional Link Prediction Methods

In this section, the neural network models MS-MLP, GA-MLP, and PSO-MLP
are compared with the traditional link prediction methods: common neighbors,
Adamic/Adar similarity, Jaccard similarity, Salton index, preferential attachment in-
dex, Leicht-Holme-Newman index, hub depressed index, hub promoted index, and
Sørensen index. The results of all approached are obtained based on the full-graph
approach.

The quantitative results of sensitivity, specificity, and the G-mean measures for
all approaches are given in Table 10. The best results of sensitivity and G-mean
measures for each dataset are highlighted in bold.

From Table 10, it can be clearly seen that the results of MS-MLP, GA-MLP, and
PSO-MLP outperform all traditional link prediction methods in all datasets. Thus, it
can be concluded that the combination of the traditional link prediction in the form
of neural network model will outperform the usage of traditional link prediction
methods separately.

6 Conclusions and Future Directions

In this chapter, neural networks optimized by three nature-inspired algorithms (MS,
GA, and PSO) were proposed and developed for the link prediction problem. The
optimized neural networks are used as classifiers for the prepared link prediction

108 R. I. Yaghi et al.

Table 10 Evaluation results of the neural network-based models compared to the traditional link
prediction methods

Methods Evaluation
measures

BUP CEG UAL INF SMG

MS-MLP Sensitivity 0.7124 0.4128 0.7180 0.4081 0.8220

Specificity 0.5000 0.8474 0.6577 0.7866 0.5607

G-mean 0.5648 0.5684 0.6408 0.4679 0.6363

GA-MLP Sensitivity 0.6764 0.3209 0.6351 0.4291 0.8014

Specificity 0.5367 0.9171 0.8166 0.7625 0.5727

G-mean 0.5880 0.5340 0.6964 0.4659 0.6381

PSO-MLP Sensitivity 0.5899 0.5174 0.5899 0.5758 0.8280

Specificity 0.5603 0.7626 0.7418 0.5808 0.5120

G-mean 0.5459 0.5804 0.5939 0.4236 0.6074

Common neighbors Sensitivity 0.0337 0.0256 0.0612 0.0217 0.0020

Specificity 0.9535 0.9967 0.9947 0.9996 0.9999

G-mean 0.1793 0.1597 0.2467 0.1473 0.0451

Adamic/Adar Sensitivity 0.0000 0.0070 0.0024 0.0380 0.0030

Specificity 0.9934 0.9994 0.9993 0.9982 0.9999

G-mean 0.0000 0.0835 0.0485 0.1947 0.0552

Jaccard Sensitivity 0.0000 0.0000 0.0000 0.0000 0.0000

Specificity 0.9925 0.9981 0.9925 0.9990 0.9943

G-mean 0.0000 0.0000 0.0000 0.0000 0.0000

Salton Sensitivity 0.0000 0.0070 0.0047 0.0036 0.0010

Specificity 0.9779 0.9918 0.9816 0.9968 0.9892

G-mean 0.0000 0.0832 0.0680 0.0600 0.0317

Preferential attachment Sensitivity 0.0449 0.0023 0.0141 0.0145 0.0010

Specificity 0.9922 0.9994 0.9989 0.9993 1.0000

G-mean 0.2112 0.0482 0.1188 0.1202 0.0319

Leicht-Holme-Newman Sensitivity 0.0000 0.0000 0.0000 0.0000 0.0000

Specificity 0.9931 0.9983 0.9930 0.9991 0.9944

G-mean 0.0000 0.0000 0.0000 0.0000 0.0000

Hub depressed Sensitivity 0.0000 0.0279 0.0447 0.0506 0.0163

Specificity 0.9655 0.9731 0.9321 0.9877 0.9774

G-mean 0.0000 0.1648 0.2041 0.2236 0.1262

Hub promoted Sensitivity 0.0000 0.0023 0.0047 0.0000 0.5000

Specificity 0.9902 0.9964 0.9890 0.9984 0.9930

G-mean 0.0000 0.0481 0.0682 0.0000 0.7046

Sørensen index Sensitivity 0.0000 0.0070 0.0047 0.0036 0.0010

Specificity 0.9819 0.9938 0.9842 0.9975 0.9908

G-mean 0.0000 0.0833 0.0681 0.0601 0.0315

Link Prediction Using Evolutionary Neural Network Models 109

datasets. For this, features were extracted from the datasets using the traditional
link prediction methods: common neighbors, Adamic/Adar similarity, Jaccard sim-
ilarity, Salton index, preferential attachment index, Leicht-Holme-Newman index,
hub depressed index, hub promoted index, Sørensen index, and centrality measures.
Moreover, this work handled the imbalanced dataset distribution of link prediction
to avoid poor performance based on two different approaches: sampling techniques
(random and undersampling) and using G-mean as a fitness function in the neural
networks. In addition, three training approaches for the developed neural network
models where experimented: in the first a full-graph was used for training, in the
second a random graph was used, and in the third an undersampling approach was
used. The neural networks resulted from the three training approaches were evalu-
ated and compared to other popular classifiers and other traditional link prediction
methods. The evaluation results show that neural networks developed based on the
full-graph and the undersampling approach are very competitive and outperform the
other methods in majority of the datasets. However, the advantage of the under-
sampling approach is a significant reduction in running time required for training
the neural network model. Overall, we can conclude that nature-inspired neural net-
works trained based on the undersampling approach can be a promising candidate
for the link prediction problem.

References

1. Adamic LA, Adar E (2003) Friends and neighbors on the web. Soc Netw 25(3):211–230
2. Al Hasan M, Chaoji V, Salem S, Zaki M (2006) Link prediction using supervised learning. In:

SDM06: workshop on link analysis, counter-terrorism and security
3. Ala’M A-Z, Faris H et al (2017) Spam profile detection in social networks based on public

features. In: 2017 8th International conference on information and communication systems
(ICICS). IEEE, pp 130–135

4. Ala’MA-Z, Faris H, HassonahMA et al (2018) Evolving support vector machines using whale
optimization algorithm for spamprofiles detection on online social networks in different lingual
contexts. Knowl-Based Syst 153:91–104

5. Ala’M A-Z, Rodan A, Alazzam A (2018) Classification model for credit data. In: 2018 Fifth
HCT information technology trends (ITT). IEEE, pp 132–137

6. Alian S, Ghatasheh N et al (2014) Multi-agent swarm spreading approach in unknown envi-
ronments. Int J Comput Sci Issues (IJCSI) 11(2):160

7. Azzini A, Tettamanzi AGB (2011) Evolutionary ANNs: a state of the art survey. Intelligenza
Artificiale 5(1):19–35

8. Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science
286(5439):509–512

9. Chawla NV (2009) Data mining for imbalanced datasets: an overview. In: Data mining and
knowledge discovery handbook. Springer, pp 875–886

10. Chen B, Chen L (2014) A link prediction algorithm based on ant colony optimization. Appl
Intell 41(3):694–708

11. Chen H, Li X, Huang Z (2005) Link prediction approach to collaborative filtering. In Proceed-
ings of the 5th ACM/IEEE-CS joint conference on digital libraries, 2005. JCDL’05. IEEE, pp
141–142

12. Chowdhury GG (2010) Introduction to modern information retrieval. Facet Publishing

110 R. I. Yaghi et al.

13. Clauset A,Moore C, NewmanMEJ (2008). Hierarchical structure and the prediction ofmissing
links in networks. Nature 453(7191):98

14. Davis L (1991) Handbook of genetic algorithms. CUMINCAD
15. Ding S, Su C, Yu J (2011) An optimizing bp neural network algorithm based on genetic

algorithm. Artif Intell Rev 36(2):153–162
16. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95.

Proceedings of the sixth international symposium onmicro machine and human science. IEEE,
pp 39–43

17. Esslimani I, Brun A, Boyer A (2011) Densifying a behavioral recommender system by social
networks link prediction methods. Soc Netw Anal Mining 1(3):159–172

18. Faris H, Aljarah I et al (2015) Optimizing feedforward neural networks using krill herd al-
gorithm for e-mail spam detection. In: 2015 IEEE Jordan conference on applied electrical
engineering and computing technologies (AEECT). IEEE, pp 1–5

19. Gao F, Musial K, Cooper C, Tsoka S (2015) Link prediction methods and their accuracy for
different social networks and network metrics. Sci Program 2015:1

20. Gilbert E, Karahalios K (2009) Predicting tie strength with social media. In: Proceedings of
the SIGCHI conference on human factors in computing systems. ACM, pp 211–220

21. Golberg DE (1989) Genetic algorithms in search, optimization, andmachine learning. Addison
Wesley, Reading

22. Gupta JND, Sexton RS (1999). Comparing backpropagationwith a genetic algorithm for neural
network training. Omega 27(6):679–684

23. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data
mining software: an update. SIGKDD Explor 11(1):10–18

24. Ismail AT, Sheta A, Al-WeshahM (2008) Amobile robot path planning using genetic algorithm
in static environment. J Comput Sci 4(4):341–344

25. Jaccard P (1901) Étude comparative de la distribution florale dans une portion des alpes et des
jura. Bull Soc Vaudoise Sci Nat 37:547–579

26. Kennedy J (1997) The particle swarm: social adaptation of knowledge. In: IEEE International
conference on evolutionary computation, 1997. IEEE, pp 303–308

27. Kennedy J (2011) Particle swarmoptimization. In: Encyclopedia ofmachine learning. Springer,
pp 760–766

28. KubatM,Holte RC,Matwin S (1998).Machine learning for the detection of oil spills in satellite
radar images. Mach Learn 30(2-3):195–215

29. Kuo T-T, Yan R, Huang Y-Y, Kung P-H, Lin S-D (2013). Unsupervised link prediction using
aggregative statistics on heterogeneous social networks. In: Proceedings of the 19th ACM
SIGKDD international conference on knowledge discovery and data mining. ACM, pp 775–
783

30. Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social networks. J Am
Soc Inf Sci Technol 58(7):1019–1031

31. Lichtenwalter RN, Lussier JT, Chawla NV (2010) New perspectives and methods in link pre-
diction. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining, ACM, pp 243–252

32. Liu H, Hu Z, Haddadi H, Tian H (2013) Hidden link prediction based on node centrality and
weak ties. EPL (Europhys Lett) 101(1):18004

33. Lorrain F, White HC (1971) Structural equivalence of individuals in social networks. J Math
Soc 1(1):49–80

34. Madain A, Ala’M A-Z, Al-Sayyed R et al (2017) Online social networks security: Threats,
attacks, and future directions. In: Social media shaping e-publishing and academia. Springer,
pp 121–132

35. Murata T, Moriyasu S (2007) Link prediction of social networks based on weighted proximity
measures. In: Proceedings of the IEEE/WIC/ACM international conference on web intelli-
gence. IEEE Computer Society, pp 85–88

36. Patro S, Sahu KK (2015) Normalization: a preprocessing stage. arXiv preprint arX-
iv:1503.06462

http://arxiv.org/abs/1503.06462

Link Prediction Using Evolutionary Neural Network Models 111

37. Quinlan R (1993) C4.5: programs for machine learning. Morgan Kaufmann Publishers, San
Mateo, CA (1993)

38. Redner S (2008) Networks: teasing out the missing links. Nature 453(7191):47
39. Rodan A, Faris H et al (2016) Optimizing feedforward neural networks using biogeography

based optimization for e-mail spam identification. Int J Commun Netw Syst Sci 9(1):19–28
40. Schall D (2014) Link prediction in directed social networks. Soc Netw Anal Mining 4(1):157
41. Schifanella R, Barrat A, Cattuto C, Markines B, Menczer F (2010) Folks in folksonomies:

social link prediction from shared metadata. In: Proceedings of the third ACM international
conference on Web search and data mining. ACM, pp 271–280

42. Shibata N, Kajikawa Y, Sakata I (2012) Link prediction in citation networks. J Am Soc Inf Sci
Technol 63(1):78–85

43. Taskar B,WongM-F, Abbeel P, Koller D (2004) Link prediction in relational data. In: Advances
in neural information processing systems, pp 659–666

44. Wang C, Satuluri V, Parthasarathy S (2007) Local probabilistic models for link prediction. In:
Seventh IEEE international conference on data mining (ICDM 2007). IEEE, pp 322–331

45. Wang G-G (2016) Moth search algorithm: a bio-inspired metaheuristic algorithm for global
optimization problems. Memetic Comput 1–14

46. Xie Z (2005) Centrality measures in text mining: prediction of noun phrases that appear in ab-
stracts. In :Proceedings of the ACL student research workshop. Association for Computational
Linguistics, pp 103–108

47. Yamany W, Fawzy M, Tharwat A, Hassanien AE (2015) Moth-flame optimization for training
multi-layer perceptrons. In: 2015 11th International computer engineering conference (ICEN-
CO). IEEE, pp 267–272

Evolving Genetic Programming Models
for Predicting Quantities of Adhesive
Wear in Low and Medium Carbon Steel

Rana Faris, Bara’a Almasri, Hossam Faris, Faris M. AL-Oqla and Doraid
Dalalah

Abstract Wear loss prediction is still essential in various industrial applications
particularly the cutting tools. This process is quite sophisticated due to the relation
between the interrelated variables. In this work, a genetic programming optimiza-
tion model for predicting and optimizing the quantities of adhesive wear in low and
medium carbon steel was generated. Carbon steel material was subjected to dry slid-
ing wear experiments using a pin-on-disc module. Several parameters including the
applied load, sliding speed and timewere involved in themodel. The proposedmodel
was capable of predicting and optimizing the wear loss in carbon steel and was evalu-
ated and tested using different performance criteria to ensure its reliability. The gener-
atedmodel can be utilized tomonitor wear inmechanical componentswithout requir-
ing any human efforts to enhance the monitoring efficiency and reduce human errors.

Keywords Genetic programming · Adhesive wear · Carbon steel · Prediction

R. Faris · B. Almasri
Industrial Engineering Department, Jordan University of Science and Technology,
Irbid, Jordan
e-mail: eng.ranafaris90@gmail.com

H. Faris (B)
King Abdullah II School for Information Technology, The University of Jordan,
Amman, Jordan
e-mail: hossam.faris@ju.edu.jo

F. M. AL-Oqla
Department of Mechanical Engineering, Faculty of Engineering, The Hashemite University,
Zarqa 13133, Jordan
e-mail: fmaloqla@hu.edu.jo

D. Dalalah
Industrial Engineering and Engineering Management, University of Sharjah, Sharjah,
United Arab Emirates
e-mail: ddalalah@sharjah.ac.ae

© Springer Nature Singapore Pte Ltd. 2020
S. Mirjalili et al. (eds.), Evolutionary Machine Learning Techniques,
Algorithms for Intelligent Systems, https://doi.org/10.1007/978-981-32-9990-0_7

113

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-32-9990-0_7&domain=pdf
mailto:eng.ranafaris90@gmail.com
mailto:hossam.faris@ju.edu.jo
mailto:fmaloqla@hu.edu.jo
mailto:ddalalah@sharjah.ac.ae
https://doi.org/10.1007/978-981-32-9990-0_7

114 R. Faris et al.

1 Introduction

To stay competitive inmodern industries andmarkets, engineers have to keep coming
up with new techniques and materials and work on improving processes to develop
higher-quality products. Many traditional materials have helped in engineering ap-
plications for long period of time. However, they are cautiously improved to con-
tribute meeting the demand of weight reduction, performance enhancement as well
as customer satisfaction attributes [3]. Thus, selecting a proper material type for a
particular application requires possessing desired characteristics. This in order make
the continues improvement as well as predicting and controlling the manufactur-
ing characteristics of materials using modern techniques are mandatory for their
improvement process to maintain competitive for modern design possibilities [4].
It was estimated that there are more than 80,000 material types including metallic
alloys and nonmetallic engineering materials [15].

Wear phenomenon is still considered as of the serious problems in the design of
mechanical components particularly the cutting tools, as it usuallymake defects in the
mechanical parts resulting in a functionality failure. Several factors, in fact, affect
the wear phenomenon such as the applied load on the contact area, sliding speed
and sliding time. However, some other conditions are hard to be controlled such
as temperature and vibration, a problem that can be solved by ensuring appropriate
mechanical rigidity when measuring wear. Since wear is a system derived property,
the wear results and correct interpretation of the wear data are crucial issue. Due to
the complex nature of wear and large number of affecting parameters, the process of
investigation has been delayed and resulted in isolated studies towards a particular
wear mechanism [14]. Some common wear mechanisms include:

• Adhesive wear
• Abrasive wear
• Fatigue wear
• Fretting wear
• Erosive wear.

Adhesive wear which is site of interest in this study is defined as the resulting
material loss of relative sliding or rolling movement of two contacting solid surfaces;
when contact pressure is high, it causes permanent deformation of rubbing compo-
nent. The adhesion wear is usually considered as one of the most spread wears as
it accounts for 15% of the industrial wear [2] , which occurs when the surfaces are
on a sliding movement one over the other so that the pressure between the adjacent
projections is enough to yield some local formation adhesion and plastic [9].

A commonly used configuration to test adhesivewear specifications is pin-on-disc
method due to its simplicity. In order to reduce the effect of many uncontrollable
variables, some practices could be followed before and after conducting a wear test
using the pin-on-disc. For example, before implementing pin-on-disc configuration,
the rotating disc must be grind and polished to a mirror surface to erase the tracks of
previous work and prevent vibration problem along with realizing correct measures.

Evolving Genetic Programming Models for Predicting Quantities … 115

However, the process stays complex and the effect of uncontrollable variables re-
mains. Most industries face the problem of wear on parts in services, and anymoving
part in services will suffer fromwear at contact point hence it is needed to be replaced
which costs money and causes downtime for the equipment. Therefore, developing
an accurate wear prediction model can dramatically enhance maintaining surface
quality, reduce cost and increase productivity [21].

Typically, mathematical models were developed in order to simulate material
behaviours and properties. These models were derived from a number of experimen-
tal data obtained in special conditions and with controllable variables [1]. Besides
mathematical modelling, several researchers have developed wear prediction mod-
els based on artificial intelligence (AI) and machine learning approaches. One of
the most adopted approaches is artificial neural networks (ANN). In [13], authors
used ANN-based prediction model for predicting the quantities of wear loss for Mo
coating in a pin-on-plate configuration. The Mo coatings were subjected to sliding
wear under various loads and environment conditions. ANN showed acceptable per-
formance results. Another use of ANN was utilized to estimate the wear loss of AA
6351 aluminium alloy with different ageing temperature and environmental condi-
tions using a pin-on-discmodule [8]. Othermethodswere also reported for predicting
the wear loss other material based upon ANN, neuro-fuzzy as well as others [7, 20,
21, 24]. Although neural networks have advantages like their predictive power, they
still have some drawbacks such as their limitation in giving an insight about the
undergoing interaction between the interrelated variables. Thus, they much work as
a block-box models.

Genetic programming (GP), on the other hand, is another bio-inspiredAI approach
which evolves a number of mathematical equations through evolutionary operators
like crossover and mutation. GP has in addition extra advantages compared to neural
networks which are the capabilities of giving an insight into the underlying system
by producing compact and being easy to evaluate mathematical models. GP is then
reliable and logical in modelling various engineering applications under uncertainty
environments.

Therefore, the aim of this study is to generate and optimize a GP model capable
of predicting the quantities of adhesive wear for both low and medium carbon steel.
The results of this model will be as a function of the load, sliding speed and sliding
time based upon the pin-on-disc configuration. This model would dramatically en-
hance developing and conducting suitable monitoring systems for wear when using
such type of steel and imitate and being a guideline for wider monitoring systems re-
garding other material types in various industrial applications. The generated model
can be automatically constructed by a genetic algorithm to monitor wear in mechan-
ical components without requiring any human efforts to enhance the monitoring
efficiency and reduce human errors.

116 R. Faris et al.

Fig. 1 Pin-on-disc experimental module

2 Pin-on-Disc Module Description

The pin-on-disc experimental module is usually used to investigate the friction forces
between a vertical pin and rotating disc. The end of each pin specimen made of
steel, aluminium or brass rubs against the rotating, hardened, ground steel disc. The
contact pressure between the parts can be controlled utilizing a lever with weights.
The friction force is estimated utilizing a strain gauge force transducer in the bearing
point of the loading mechanism. The disc is encased in an open cup that can be
loaded up with various lubricants for the experiments. The Pin-on-disc experimental
module used in this work is shown in Fig. 1. Some technical specifications of the
utilized pin-on-disc in this work can be summarized in the following points:

• Friction disc: stainless steel, hardened, ground
• Operating speed: 0–0.42m/s
• Friction pin diameter: 4mm
• Load: 0 to maximum load of 80N
• Friction force measuring range: 0–450N.

For more information on this module, the reader can refer to (https://www.gunt.
de).

3 Symbolic Regression via Genetic Programming

The concept of symbolic regression (SR) was first coined by Koza in [18]. SR is a
type of supervised regression modelling technique. Unlike conventional regression

https://www.gunt.de
https://www.gunt.de

Evolving Genetic Programming Models for Predicting Quantities … 117

analysis methods, the idea of SR is to search the space for a structure of the model
(mathematical formulas that are represented as trees) that best fits a given training data
set along with its parameters. Therefore, SR does not impose any priori assumptions
on the structure of the model.

Genetic programming is widely applied as SRmethod [19]. GP is a special exten-
sion of the well-known Darwinian-inspired genetic algorithm. GP evolves automati-
cally a predetermined number of mathematical models in order to describe a number
of independent input variables x and some numeric weights w as a function f (x,w)
while minimizing some error criteria.

Implementing SR via GP has some powerful modelling advantages [17]. In con-
trast to other modelling techniques like neural networks, GP generates interpretable
mathematical models that are relatively more compact and easier to evaluate and
understand. In GP, the complexity of the generated produced tree models can be con-
strained by specifying the maximum width and length of the trees. In addition, GP
enjoys a powerful embedded and automatic feature selection method. In GP, strong
feature that helps in producing strong models will survive while unrelated and weak
features will be dropped and not used in generating new models. In the next section,
the evolutionary cycle of GP is described.

4 Evolutionary Cycle of Genetic Programming

GP can be described as an evolutionary cycle where its inherited GA processes (i.e.
initialization, fitness evaluation and reproduction operators) are iteratively applied
based on some learning examples. The main processes of the GP evolutionary cycle
can be explained as follows (Fig. 2):

1. Initialization: In its initial state, GP starts by initializing a predefined number
of individuals randomly. Each of these individuals is also called a computer
program or a model or a solution. GP individuals are commonly represented
as trees or LISP expression. Figure3 shows a simple example of a GP model
which is equivalent to Eq.1. The set of individuals that GP starts with is called
population. The population size parameter of GP defines their number.

z = (X ∗ 2) + 5

sin(Y)
(1)

2. Fitness evaluation: After initialization, the quality of the generated individuals
is assessed using a predetermined evaluation measure. In this work, we use the
Pearson R2 to measure the correlation between the predicted values obtained
by the candidate individual and the desired output values. By this process, the
quality of the generated individuals in terms of prediction power is determined.

3. Reproduction :At this stage, a set of GP operator are applied on probabilistically
selected individuals according to their fitness and their fitness value. The way
this process is conducted is known as the selection mechanism. The higher value
the individual has the more probable to be selected. Genetic operations include:

118 R. Faris et al.

Fig. 2 Flow chart of the
evolutionary process based
GP

Generate initial
population of N random

individuals

Apply selection
mechanism based on

fitness

Return
best

individual

Yes

No If maximum
iterations
reached

Apply reproduction
operators (Crossover

and mutation)

Evaluate fitness for
all individuals

Fig. 3 A simple GP model
represented as tree

a. Crossover: this operator is considered as one of the most important ge-
netic operators. By applying crossover, two individuals exchange some
parts of their structure. There are different types of crossover operators
range from simple to complex ones. Figure4 illustrates a simple example of
crossover where two individuals exchange randomly selected subtrees from
their model.

b. Mutation: This operation is applied on a single individual by randomly
choosing a point in the tree representation of the individual and replacing
it with another randomly generated subtree as shown in Fig. 5. Usually,
the mutation operator is applied with a rate that is much smaller that the
one for crossover. That is to avoid significant destruction of quality across
individuals caused by the major changes made by the mutation operator. On
the other side, mutation operator helps in maintaining the diversity over the

Evolving Genetic Programming Models for Predicting Quantities … 119

Fig. 4 An example of GP
crossover operator

Fig. 5 Example of GP
mutation operator

course of iterations. After applying genetic operations iteratively, the new
generated populations replace the old ones.

c. Elitism: This is a simple mechanism commonly applied to preserve best n
individuals in the population and transfer them to the next generationwithout
any modification. In GP, the value of n is usually set to 1, 2 or 3.

4. Termination condition: New populations are generated iteratively by the last
process until one of the following conditions is met;

• Number of generations is reached, which is a predetermined number specified
by the user to end the iterative process after a number of loops.

• An individual with a specific fitness value is reached. Finally, the best-so-far
individual is chosen to be the solution of the problem.

In the last two decades, GP has been applied to a wide range of industrial and
manufacturing problems showing high modelling capability [6, 10–12, 16, 22].

120 R. Faris et al.

5 Model Evaluation

When the maximum number of iteration is reached or if the model satisfied a pre-
defined quality level, then the evolutionary process should be stopped; otherwise,
another model structure should be tried again. To assess the quality and the predic-
tion power of the generated GPmodels in predicting the wearing of carbon steel, two
measurements are applied which are the variance accounted for (VAF) and root mean
squared error (RMSE). VAF and RMSE are represented in Eqs. 2 and 3, respectively.

V AF =
[
1 − var(y − ŷ)

var(y)
)

]
× 100% (2)

RMSE =
√√√√1

n

n∑
i=1

(yi − ŷi)2 (3)

Where y and ŷ are the actual output and the predicted value obtained by GP model,
respectively. n is the total number of experiments.

6 Experiments and Results

6.1 Experiments Preparation and Data Collection

Two samples of different types of steel with a known carbon percentage were pre-
pared:

• Medium carbon steel.
• Low carbon steel.

In order to conduct a wear test, working variables were specified. In the experi-
ments, variables were limited to: sliding speed, sliding time and load. Other variables
were difficult to be controlled although they affect wearing process such as working
environment temperature. The other variable was vibration of themachine arm due to
different operating speeds and different loads. This problem was solved by placing a
piece of tissue over the arm of the machine before setting the load. Before starting the
experiments, carbon steel samples were grinded to an even surface using sandpaper.
Moreover, after taking each wear measurement, machine rotating disc was grinded
and polished to a mirror surface to erase the tracks of former work then the next
experiment starts. Twenty-seven experiments were conducted for each of low and
medium samples with different values of operating variables each time. Figures6 and
7 show the values for the operating variables along with their corresponding wear
loss quantities.

Evolving Genetic Programming Models for Predicting Quantities … 121

0 10 20 30
10

15

20

25

30

Experiment sample

A
m

pl
itu

de
Load (kg)

0 10 20 30
60

70

80

90

100

110

120
Speed (rev/min)

Experiment sample

A
m

pl
itu

de

0 10 20 30
30

40

50

60

70

80

90
Time (min)

Experiment sample

A
m

pl
itu

de

0 10 20 30
0

0.005

0.01

0.015

0.02

0.025
Wear (g)

Experiment sample

A
m

pl
itu

de

Fig. 6 The input–output data for the low-carbon wear model

0 10 20 30
10

15

20

25

30

Experiment sample

A
m

pl
itu

de

Load (kg)

0 10 20 30
60

70

80

90

100

110

120
Speed (rev/min)

Experiment sample

A
m

pl
itu

de

0 10 20 30
30

40

50

60

70

80

90
Time (min)

Experiment sample

A
m

pl
itu

de

0 10 20 30
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
Wear (g)

Experiment sample

A
m

pl
itu

de

Fig. 7 The input–output data for the medium-carbon wear model

122 R. Faris et al.

Table 1 Settings of GP parameters

Parameter Value

Mutation rate 15%

Population size 1000

Maximum generations 200

Selection mechanism Tournament selector

Elites 1

Operators {+, -, *, /, sin, cos, tan}

6.2 GP Wear Model Development

For the development of the prediction models for the low and medium carbon wear,
the HeuristicLab framework is used. HeuristicLab is a framework and environment
for heuristic optimization that is written in C# language and developed by members
of the Heuristic and Evolutionary Algorithms Laboratory (HEAL)1 [5, 23]. In our
experiments, two types of models are developed using HeuristicLab; the GP models
and linear regression models. The linear models are employed for comparison as
baseline models. The initial parameter values of GP are set as given in Table1. For
training and testing, 70% of the collected data set is randomly selected for training,
while the rest 30% of the data set is left for testing.

The convergence curves GP for the low- and medium-carbon wear models are
shown in Figs. 12 and 13, respectively. In the case of the low carbon model, GP
was able to converge after 110 generations. While in the case of the medium carbon
model, GPwas converged after 45 generations. The best obtainedGPmodels for both
cases are presented in Figs. 8 and 9, respectively. The best GP model for the case of
low carbon steel was able to model the wear loss weight with a VAF value of 99.5%
andRMSE of 3.23 × 10−4, while it was capable of predicting for the testing part with
a VAF value of 90.6% and RMSE of 0.0015.While for medium carbon steel, the best
GP model values were VAF of 94% and RMSE of 0.000734 for training, and VAF
of 94.3% and RMSE of 0.000606 for the testing case. The results of GP and linear
regression (LR) models for low and medium samples are summarized in Tables2
and 3, respectively. Actual versus estimated wear predicted quantities for low and
mediumsamples alongwith absolute errors are shown inFigs. 10 and11, respectively.
Compared to the results of LRmodel, GP shows superior prediction power. Based on
the obtained results, it can be concluded that GP showed good prediction capabilities
using compact mathematical models which can be easily evaluated and deployed
compared to other approaches adopted in the literature such as neural networks.

1http://dev.heuristiclab.com.

http://dev.heuristiclab.com

Evolving Genetic Programming Models for Predicting Quantities … 123

Wearlow = (t · s · (c0 · s + sin ((c1 · t + c2 · s))) · (c3 · s + c4 · t + tan (c5 · s) · c6 + tan (c7) · c8) · c9 + c10)

c0 = 0.27029
c1 = 0.95369
c2 = −0.41068
c3 = 0.75134
c4 = 0.95369
c5 = 1.0216
c6 = −1.0
c7 = 1.4368
c8 = 1.2596
c9 = 1.8049E−10
c10 = 0.00053583

Fig. 8 Best generated model for low carbon wear using GP

Wearmedium =
(

s · t · c0
sin((c1 · l+ c2)) · cos(cos((c3 · s+ c4 · l))) · c5+ c6

)

c0 = −8.9815E−08
c1 = −1.1003
c2 = 8.0088
c3 = 1.827
c4 = −1.1003
c5 = 0.2108
c6 = −0.0005508

Fig. 9 Best generated model for medium carbon wear using GP

Table 2 Evaluation results of GP wear model for low carbon

LR GP

VAF RMSE VAF RMSE

Training 78.569% 0.0022 99.535% 3.236e−04

Testing 82.0416% 0.0018 90.617% 0.0015

Table 3 Evaluation results of GP wear model for medium carbon

LR GP

VAF RMSE VAF RMSE

Training 68.922% 0.0017 94.045% 0.000734

Testing 47.393% 0.0017 94.279% 0.000606

124 R. Faris et al.

0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025

Training sampels

W
ea

r
(g

)

0 2 4 6 8 10
2

4

6

8

10

12

14

16
x 10

−3

Testing samples

W
ea

r
(g

)
0 5 10 15 20

0

0.2

0.4

0.6

0.8

1
x 10

−3

A
bs

ol
ut

e
er

ro
r

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

A
bs

ol
ut

e
er

ro
r

Fig. 10 Actual and GP estimated wearing results for low carbon

0 5 10 15 20
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Training sampels

W
ea

r
(g

)

0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

Testing samples

W
ea

r
(g

)

0 5 10 15 20
0

0.5

1

1.5

2
x 10

−3

A
bs

ol
ut

e
er

ro
r

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4 x 10
−3

A
bs

ol
ut

e
er

ro
r

Fig. 11 Actual and GP estimated wearing results for medium carbon

7 Conclusion

In this chapter, a genetic programming-based model was developed and applied to
predict the wear loss quantities of low and medium carbon steel. Two samples of
different types of carbon steelwith a known carbon percentagewere investigated (i.e.,
low and medium). Carbon material was subjected to dry sliding wear experiments

Evolving Genetic Programming Models for Predicting Quantities … 125

0 20 40 60 80 100 120 140 160 180 200
0.93

0.94

0.95

0.96

0.97

0.98

0.99

Generations

Q
ua

lit
y

Fig. 12 Best-so-far convergence curve for the low carbon wear GP prediction model

0 20 40 60 80 100 120 140 160 180 200

Generations

0.7

0.75

0.8

0.85

0.9

0.95

Q
ua

lit
y

Fig. 13 Best-so-far convergence curve for the medium carbon wear GP prediction model

126 R. Faris et al.

using a pin-on-disc module based on three attributes; they are load, sliding speed
and time. GP showed good performance in prediction results by evolving simple
mathematical models which are easy to evaluate.

References

1. Abdelbary A, Abouelwafa MN, El Fahham IM, Hamdy AH (2012) Modeling the wear of
polyamide 66 using artificial neural network. Mater Des 41:460–469

2. AdamiakM,Górka J,KikT (2009)Comparisonof abrasion resistance of selected constructional
materials. J Achieve Mater Manuf Eng 37(2):375–380

3. Al-Oqla FM, Omar AA (2012) A decision-making model for selecting the gsm mobile phone
antenna in the design phase to increase over all performance. Progr Electromagnetics Res C
25:249–269

4. Al-Oqla FM, Salit MA, Ishak MR, Aziz NA (2015) Selecting natural fibers for bio-based
materials with conflicting criteria. Am J Appl Sci 12(1):64

5. Beham A, Affenzeller M, Wagner S, Kronberger GK (2008) Simulation optimization with
heuristiclab. In: The 20th European modeling and simulation symposium (EMSS2008), pp
75–80

6. Chan KY, Kwong CK, Dillon TS, Tsim YS (2011) Reducing overfitting in manufacturing
processmodeling using a backward elimination based genetic programming.Appl Soft Comput
11(2):1648–1656

7. Chang L, Friedrich K (2010) Enhancement effect of nanoparticles on the sliding wear of
short fiber-reinforced polymer composites: a critical discussion of wear mechanisms. Tribol
Int 43(12):2355–2364

8. Durmus HK, Ozkaya E, Dotc CM (2006) The use of neural networks for the prediction of wear
loss and surface roughness of AA 6351 aluminium alloy. Mater Des 27(2):156–159

9. Eyre TS (1976) Wear characteristics of metals. Tribol Int 9(5):203–212
10. Faris H, Sheta A (2013) Identification of the tennessee eastman chemical process reactor using

genetic programming. Int J Adv Sci Technol 50:121–140
11. Faris H, Sheta A (2016) A comparison between parametric and non-parametric soft computing

approaches to model the temperature of a metal cutting tool. Int J Comput Integr Manuf
29(1):64–75

12. Faris H, Sheta A, Öznergiz E (2013) Modelling hot rolling manufacturing process using soft
computing techniques. Int J Comput Integr Manuf 26(8):762–771

13. Hakan C, Öztürk H, çelik E, Karlık B (2006) Artificial neural network-based prediction tech-
nique for wear loss quantities in mo coatings. Wear 261(10):1064–1068

14. Hsu SM, Shen MC, Ruff AW (1997) Wear prediction for metals. Tribol Int 30(5):377–383
15. Jahan A, Ismail MY, Sapuan SM, Mustapha F (2010) Material screening and choosing

methods—a review. Mater Des 31(2):696–705
16. Jakobović D, Jelenković L, Budin L (2007) Genetic programming heuristics for multiple ma-

chine scheduling. In: European Conference on Genetic Programming. Springer, Berlin, pp
321–330

17. Kotanchek M, Smits G, Kordon A (2003) Industrial strength genetic programming. In: Riolo
RL,Worzel B (eds) Genetic programming theory and practice. Kluwer, NewYork, pp 239–256

18. Koza JR (1991) Evolving a computer program to generate random numbers using the genetic
programming paradigm. In: Proceedings of the Fourth International Conference on Genetic
Algorithms. Morgan Kaufmann, La Jolla

19. Koza JR (1992) Genetic programming: on the programming of computers by means of natural
selection. The MIT Press, Cambridge

Evolving Genetic Programming Models for Predicting Quantities … 127

20. Ren Qun, Balazinski Marek, Baron Luc, Jemielniak Krzysztof (2011) Tsk fuzzy modeling
for tool wear condition in turning processes: an experimental study. Eng Appl Artif Intell
24(2):260–265

21. Rizal M, Ghani JA, Nuawi MZ, Che Haron CH (2013) Online tool wear prediction system
in the turning process using an adaptive neuro-fuzzy inference system. Appl Soft Comput
13(4):1960– 1968

22. ShetaAF,RauschP,Al-AfeefAS (2012)Amonitoring and control framework for lost foamcast-
ing manufacturing processes using genetic programming. Int J Bio-Inspired Comput 4(2):111–
118

23. Wagner S Affenzeller M (2004) The heuristiclab optimization environment. Technical report,
Johannes Kepler University Linz, Austria

24. Wang W (2007) A prognosis model for wear prediction based on oil-based monitoring. J Oper
Res Soc 58(7):887–893

Feature Selection

EvoloPy-FS: An Open-Source
Nature-Inspired Optimization
Framework in Python for Feature
Selection

Ruba Abu Khurma, Ibrahim Aljarah, Ahmad Sharieh and Seyedali Mirjalili

Abstract Feature selection is a necessary critical stage in data mining process.
There is always an arm race to build frameworks and libraries that ease and auto-
mate this process. In this chapter, an EvoloPy-FS framework is proposed, which is
a Python open-source optimization framework that includes several well-regarded
swarm intelligence (SI) algorithms. It is geared toward feature selection optimization
problems. It is an easy to use, reusable, and adaptable framework. The objective of
developing EvoloPy-FS is providing a feature selection engine to help researchers
even those with less knowledge in SI in solving their problems and visualizing rapid
results with a less programming effort. That is why the orientation of this work was
to build an open-source, white-box framework, where algorithms and data structures
are being explicit, transparent, and publicly available. EvoloPy-FS comes to continue
our path for building an integrated optimization environment, which was started by
the original EvoloPy for global optimization problems, then EvoloPy-NN for training
multilayer perception neural network, and finally the new EvoloPy-FS for feature
selection optimization. EvoloPy-FS is freely hosted on (www.evo-ml.com) with a
helpful documentation.

Keywords Nature-inspired algorithm (NIA) · Swarm intelligence (SI) ·
Evolutionary algorithm (EA) · Feature selection (FS) · Transfer function (TF) ·
Framework · Library · Optimization

R. A. Khurma · I. Aljarah · A. Sharieh
King Abdullah II School for Information Technology, The University of Jordan,
Amman, Jordan
e-mail: rubaabukhurma82@gmail.com

I. Aljarah
e-mail: i.aljarah@ju.edu.jo

A. Sharieh
e-mail: sharieh@ju.edu.jo

S. Mirjalili (B)
Torrens University Australia, Brisbane, QLD 4006, Australia
e-mail: ali.mirjalili@gmail.com

Griffith University, Brisbane, QLD 4111, Australia

© Springer Nature Singapore Pte Ltd. 2020
S. Mirjalili et al. (eds.), Evolutionary Machine Learning Techniques,
Algorithms for Intelligent Systems, https://doi.org/10.1007/978-981-32-9990-0_8

131

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-32-9990-0_8&domain=pdf
www.evo-ml.com
mailto:rubaabukhurma82@gmail.com
mailto:i.aljarah@ju.edu.jo
mailto:sharieh@ju.edu.jo
mailto:ali.mirjalili@gmail.com
https://doi.org/10.1007/978-981-32-9990-0_8

132 R. A. Khurma et al.

1 Introduction

In this chapter, we present a new Python framework that consists of a set of well-
regarded and recent nature-inspired algorithms in their binary representation for
handling feature selection (FS) optimization problem. FS is a preprocessing stage
applied to a dataset for finding a near-optimal subset of features from the original
feature superset [1]. The generated reduced dataset out of the FS stage may yield the
same or even better performance compared with the complete set of features [2].

Reducing the size of the dataset by minimizing the number of features is consid-
ered a critical step in either supervised or unsupervised learning. In the supervised
learning (classification and regression), it means exploring which features have the
highest ability to predict the class labels [3–5], while in the unsupervised learn-
ing (clustering), FS strives to find the most influential features which can perfectly
discriminate samples (observations) into separated clusters [6, 7].

For the training purposes, FS restricts the decision of the data mining or machine
learning task to those effective features (relevant features) and excludes the less
effective ones (irrelevant or redundant features) by considering them as noise [8].
Logically, this is expected to improve the generalization capability and enhance the
quality of the generated model in terms of simplicity and comprehensibility during
the training stage. On the other hand, during the testing stage this will be reflected
through increased classification performance and reduced error rate [9].

Due to data explosion and increasing the dimensionality, FS becomes a serious
requirement in the learning domains. For example, FS is widely applied in the era of
pattern recognition applications such as bioinformatics, text mining, and computer
vision, where the curse of dimensionality phenomena (Hughes effect) is frequently
encountered [10].

FS finds its opportunities in these applications to mitigate the high-dimensionality
consequences and relax their significant effect on the classifier job. The other reason
why FS becomes paramount is the cost of the classification system, which includes
the processing time of the current learning algorithms. According to the computation
issues, these algorithms are not always responding in an adequate time; hence, they
need to be adapted to scale with high-dimensionality problems without causing a
significant performance degradation [11].

There are different approaches to carry out FS including the following three ap-
proaches:

1. Filter-based approach: (algorithm-independent and data-driven approach): It s-
tatistically studies the intrinsic characteristics of the dataset and computes the
relevance score for each feature in isolation of the other features (univariate fil-
ters) and independently from any predictor /classifier (univariate and multivariate
filters) [12].

2. Wrapper-basedapproach: (algorithm-dependent and classifier-driven approach):
In contrast to filters, wrappers are algorithm-specific and computation-intensive.
They utilize the classifier predictive capability to score each generated subset from
the searching process [13].

EvoloPy-FS: An Open-Source Nature-Inspired … 133

3. Embedded approach: The search process for the optimal subset is implicitly
integrated into the classifier construction such as the decision tree classifier [14].

FS is regarded as a complex search problem, where the main target is identifying
themost informative and representative features(variables or properties) in the feature
space. Formally, FS can be expressed as follows:

Given a superset of features F = {F1,F2,F3,…Fn}, and Y is the class label, the
objective of FS problem is to find S ⊂ F such that S produces the best performance,
when predicting Y (minimum error rate and minimum number of features) [15].

This can be done in three main steps [16]:

1. Searching: Traversing the feature space to generate the subsets of features from
the original pool of features.

2. Feature evaluation: Measuring the predictive level of each subset of features
and how much they are relevant to the class label.

3. Stopping criterion: This is the stop point (termination condition) at which the
search process halts.

The search process can be performed using different methods. Conventionally,
the brute force method generates all the potential subsets of features which con-
sumes a large search space and results in exponential running time [17]. On the
other hand, metaheuristic algorithms are considered a suitable alternative solution
for solving complex optimization problems in the time the conventional methods are
incapacitate to give a reasonable solution within a polynomial running time. Due
to their stochastic and nondeterministic nature, metaheuristic algorithms have been
a widespread practice and many academic researchers advocated to use them for
solving complex search problems [18].

Nature-inspired algorithm (NIA) is a category of metaheuristic optimization algo-
rithms inspired by the natural phenomena and includes two main subcategories [19]:
evolutionary algorithm (EA) and swarm intelligence (SI). EA adopts the evolution
and natural selection ideas advocated by Darwin’s theory such as genetic algorithm
(GA) [20] and genetic programming (GP) [21]. It uses a number of operators to
evolve solutions such as crossover, mutation, and elitism.

SI, on the other hand, mimics the natural behavior model of agents where the col-
lective (social) intelligence is sketched out through a swarm system,which composed
of abundant, homogeneous, self-organized, and decentralized agents distributed in
the environment such as schools of fish, flocks of birds, and colonies of ants [22].
Reaching to the best solution in SI depends on exchanging information between the
individuals in the swarm system.

SI is commonly utilized for solving optimization problems with a large search
space. Well-regarded algorithms that fall in this category are particle swarm opti-
mization (PSO) [23] and ant colony optimization (ACO) [24]. Recent SI algorithm-
s include cuckoo search (CS) [25], gray wolf optimizer (GWO) [26], multi-verse
optimizer (MVO) [27], moth-flame optimization (MFO) [28], whale optimization
algorithm (WOA) [29], bat algorithm (BAT) [30], firefly algorithm (FFA) [31], and
many others [32–37].

134 R. A. Khurma et al.

According to no free lunch (NFL) theorem [38], no algorithm is the best for all
optimization problems. An algorithm which has the superior performance for some
optimization problems may degrade its performance when used with other types
of optimization problems. This theorem motivated the researchers to develop novel
algorithms and investigate existing ones when adopted to solve various challenging
optimization problems in different applications.

The motivation to develop EvoloPy-FS is to achieve the following prime advan-
tages:

1. Utilizing, jointly, the power of Python and SI algorithms to solve FS problem in
several applications.

2. Extending the range of users by empowering inexperienced users from different
domains to employ this framework in their applications.

3. Relieving the technical work overhead so that the researchers are enabled to
focus more on analyzing the generated learning models instead of losing the
time starting programming from scratch.

4. Optimizing the time of configuring and testing the experiments.
5. Practically speaking, using a fast programming language shipped with libraries

can help making rapid prototyping and so relieving the implementation matters.
6. Achieving the adaptability by customizing algorithms and amending parameters

to tackle a new family of problems.
7. Providing separability which means separating the problem to be solved from

the benchmark algorithms, meanwhile allowing a user to play and plug different
datasets into the framework in order to assess the performed data mining task.

8. Avoiding the obscurity by assembling the different components of the SI system
within a white-box framework which is provided as an open-source code.

9. Offering a ready-to-use test suite for researchers to validate their new method-
ologies and comparing them with the published benchmark algorithms.

10. Increasing the reliability and lessening the errors by providing a quite generic
tool which is not tailored to any application and leave the researchers free to
make their instantiations and specifications.

This chapter is organized as follows: Sect. 2 describes the related works. Section3
explains the Python properties. Section4 shows EvoloPy versions. Section5 presents
an overview for the framework. Section6 discusses some related design issues, Sec-
t. 7 compares wrapper and filter–wrapper and filter approaches, and finally Sect. 8
concludes the chapter and shows the future directions.

2 Related Works

This section brings to the light a summary of the main accomplishments in the liter-
ature which are related to metaheuristic frameworks and FS software developments.
The details of these works are presented in Tables1 and 2, respectively.

EvoloPy-FS: An Open-Source Nature-Inspired … 135

Ta
bl
e
1

E
vo
lu
tio

na
ry

co
m
pu
ta
tio

n
fr
am

ew
or
ks
,t
oo
ls
,a
nd

lib
ra
ri
es

L
ib
ra
ry

PL
Y
ea
r

O
pt
im

iz
at
io
n
al
go

ri
th
m
(s
)

D
es
cr
ip
tio

n

G
A
lib

[3
9]

C
+
+

19
96

G
A

G
A
lib

w
as

de
ve
lo
pe
d
ov
er

U
N
IX

op
er
at
in
g
sy
st
em

.T
he

lib
ra
ry

w
as

ut
ili
ze
d
in

pa
ra
lle

ls
ys
te
m
s
an
d
em

pl
oy
ed

w
ith

in
a
di
st
ri
bu
te
d
co
m
pu

tin
g.

It
is
bu
ilt

on
pl
at
fo
rm

s
an
d
is

im
pl
em

en
te
d
to

su
pp

or
td

is
tr
ib
ut
ed
/p
ar
al
le
le
nv
ir
on

m
en
ts

E
vo
lv
in
g
ob
je
ct
(E
O
)

ce
nt
er
in
g
[4
0]

C
+
+

20
01

Se
ve
ra
lE

C
s
pa
ra
di
gm

s
in
cl
ud
in
g:

G
A
an
d
PS

O
1.

W
as

ut
ili
ze
d
to

so
lv
e
se
ve
ra
lc
om

bi
na
to
ri
al
pr
ob

le
m
s:

bi
na
ry

st
ri
ng

s,
pe
rm

ut
at
io
ns
,v
ec
to
rs

2.
Im

pl
em

en
te
d
di
ff
er
en
te
vo
lu
tio

na
ry

se
le
ct
io
n
op

er
at
or
s

su
ch

as
to
ur
na
m
en
ts
an
d
ro
ul
et
te

3.
Se
ve
ra
lo

pe
ra
to
rs
:u

ni
fo
rm

in
iti
al
iz
at
io
n,
G
au
ss
ia
n

m
ut
at
io
n,
su
b-
tr
ee

cr
os
so
ve
r
an
d
di
ff
er
en
tc
om

bi
na
tio

n
st
ra
te
gi
es

in
cl
ud
in
g:

pr
op
or
tio

na
lc
om

bi
na
tio

n
an
d

se
qu

en
tia

lc
al
l

4.
Pa
ra
lle
liz
at
io
n
to
ol
s:
O
pe
nM

P
an
d
op
en
M
PI

5.
T
he
re

w
er
e
m
an
y
E
O
ve
rs
io
ns

w
hi
ch

w
er
e
de
ve
lo
pe
d
an
d

im
pl
em

en
te
d
ov
er

di
ff
er
en
to

pe
ra
tin

g
sy
st
em

s
in
cl
ud

in
g

W
in
do
w
s
an
d
U
N
IX

T
E
A
ce
nt
er
in
g
[4
1]

C
+
+

20
01

G
A
s
an
d
ev
ol
ut
io
na
ry

pr
og
ra
m
m
in
g

Su
pp
or
ts
co
m
pl
ex

ge
no
ty
pe
s
an
d
no
ns
ta
nd
ar
d

re
pr
es
en
ta
tio

ns
w
ith

m
ix
ed

ch
ro
m
os
om

e
ty
pe
s
an
d
pa
ra
lle
l

po
pu
la
tio

n
st
ru
ct
ur
es

(c
on
tin

ue
d)

136 R. A. Khurma et al.

Ta
bl
e
1

(c
on
tin

ue
d)

L
ib
ra
ry

PL
Y
ea
r

O
pt
im

iz
at
io
n
al
go

ri
th
m
(s
)

D
es
cr
ip
tio

n

O
pe
nT

S
[4
2]

Ja
va

20
01

Ta
bu

se
ar
ch

al
go

ri
th
m

1.
It
ca
n
w
or
k
w
ith

an
y
pr
ob

le
m
s
su
ch

as
ve
hi
cl
e
ro
ut
in
g

pr
ob
le
m
s
an
d
as
si
gn
m
en
tp

ro
bl
em

s

2.
A
dd

iti
on

al
fe
at
ur
es

ar
e
pr
es
en
te
d
in
cl
ud

in
g
th
e
ab
ili
ty

to
ru
n
ov
er

di
ff
er
en
tm

od
er
n
co
m
pu
te
rs
w
ith

m
ul
tip

ro
ce
ss
in
g

sy
st
em

s

3.
Ta
ke

th
e
ad
va
nt
ag
e
of

Ja
va

fe
at
ur
es

su
ch

as
cr
os
s-
pl
at
fo
rm

an
d
ob
je
ct
-o
ri
en
te
d
pr
og
ra
m
m
in
g

4.
A
bi
lit
y
to

be
de
liv

er
ed

on
th
e
In
te
rn
et

PI
SA

[4
3]

PL
in
de
pe
nd
en
ce

20
03

M
os
tE

A
s
an
d
si
m
ul
at
ed

an
ne
al
in
g

PI
SA

w
as

ba
si
ca
lly

us
ed

to
so
lv
e
m
ul
ti-
ob

je
ct
iv
e
pr
ob

le
m
s

fo
r
op
tim

iz
in
g
m
or
e
th
an

on
e
co
nfl

ic
tin

g
cr
ite
ri
on
.G

oa
ls

Pa
ra
di
sE

O
[4
4]

C
+
+

20
04

D
if
fe
re
nt

E
A
s

1.
A
w
hi
te
-b
ox

ob
je
ct
-o
ri
en
te
d
fr
am

ew
or
k

2.
In
te
gr
at
es

m
an
y
di
st
ri
bu
te
d
m
et
ah
eu
ri
st
ic
s
pl
at
fo
rm

s

3.
In
cl
ud
es

th
e
lo
ca
ls
ea
rc
he
s
(L
S)

an
d
hy
br
id
iz
at
io
n

m
ec
ha
ni
sm

s

H
eu
ri
st
ic
L
ab

[4
5]

C
#

20
05

E
A
s
al
go
ri
th
m
s
in
cl
ud
in
g:

PS
O
,

G
A
,a
nd

G
P

A
ge
ne
ri
c
op

tim
iz
at
io
n
en
vi
ro
nm

en
t

Ja
va
E
vA

[4
6]

Ja
va

20
05

G
A

Tw
o
m
ai
n
pa
rt
s:
E
vA

C
lie
nt

(G
U
I)
an
d
E
vA

C
lie
nt

(o
pt
im

iz
at
io
n
ke
rn
el
)

(c
on
tin

ue
d)

EvoloPy-FS: An Open-Source Nature-Inspired … 137
Ta

bl
e
1

(c
on
tin

ue
d)

L
ib
ra
ry

PL
Y
ea
r

O
pt
im

iz
at
io
n
al
go

ri
th
m
(s
)

D
es
cr
ip
tio

n

U
O
F
[4
7]

C
+
+

20
06

L
M
,G

A
,P

SO
,S

A
,e
tc
.

It
ba
si
ca
lly

se
pa
ra
te
s
th
e
pr
ob

le
m

an
d
th
e
so
lv
er

an
d
m
ak
es

th
es
e
tw
o
pa
rt
s
in
de
pe
nd
en
tb

ut
su
pp
or
ts
a
br
id
gi
ng

be
tw
ee
n
th
em

.T
hi
s
m
ad
e
th
e
lib

ra
ry

m
or
e
ge
ne
ra
la
nd

ab
le

to
ta
ck
le
ot
he
r
op

tim
iz
at
io
n
pr
ob

le
m
s

G
E
A
T
bx

[4
8]

M
A
T
L
A
B

20
07

M
an
y
G
A
an
d
G
P
va
ri
an
ts

Pr
ov
id
es

m
an
y
gl
ob

al
op

tim
iz
at
io
n
ca
pa
bi
lit
ie
s

C
Il
ib

[4
9]

Ja
va

20
08

SI
s,
E
C
s,
an
d
N
N

1.
V
er
y
ge
ne
ri
c,
pl
ug
,a
nd

si
m
ul
at
e

2.
U
se
s
X
M
L
fil
es

3.
U
se
s
si
m
pl
e
Ja
va

cl
as
s

4.
T
he

co
de

w
as

op
en

so
ur
ce

w
hi
ch

al
lo
w
ed

fo
r
th
e

co
nt
in
uo
us

up
da
te
fo
r
th
e
co
de

an
d
m
ad
e
th
e
er
ro
r

di
sc
ov
er
y
an
d
ha
nd
lin

g
to

be
do
ne

in
sh
or
tt
im

e

JC
L
E
C
[5
0]

Ja
va

20
08

E
A
s:
G
A
,G

P
1.

It
ap
pl
ie
d
m
an
y
of

th
e
ob
je
ct
-o
ri
en
te
d
pr
og
ra
m
m
in
g

co
nc
ep
ts
su
ch

as
ab
st
ra
ct
io
ns

an
d
re
us
ab
ili
ty

(r
eu
se

co
de
)

2.
O
pe
n
so
ur
ce

w
hi
ch

in
di
ca
te
s
it
is
ch
ea
pe
r
fo
r
sh
ar
in
g
an
d

m
od
ifi
ca
tio

ns

3.
Po

rt
ab
le
am

on
g
an
y
pl
at
fo
rm

w
ith

Ja
va

vi
rt
ua
l

m
ac
hi
ne
(J
V
M
)

Py
ev
ol
ve

[5
1]

Py
th
on

20
09

G
A
,n

ex
tv

er
si
on
s
su
pp
or
tG

P
1.

It
su
pp
or
te
d
m
ul
tip

le
op
er
at
in
g
sy
st
em

s,
an
d
it
co
ul
d
be

ru
n
on

ce
ll
ph
on
es

2.
It
in
cl
ud
ed

se
ve
ra
le
vo
lu
tio

na
ry

op
er
at
or
s
in
cl
ud
in
g
th
e

se
le
ct
io
n
op

er
at
or
s

E
vA

2
[5
2]

Ja
va

20
10

Po
pu
la
tio

n-
ba
se
d,

su
ch

as
:G

A
s,

D
E
,P

SO
,a
nd

SA
1.

H
eu
ri
st
ic
op

er
at
or
s
ar
e
ea
si
ly

in
te
rc
ha
ng

ed
be
tw

ee
n

di
ff
er
en
to

pt
im

iz
at
io
n
m
od

ul
es

an
d
ea
si
ly

ad
ap
te
d
to

an
y

op
tim

iz
at
io
n
pr
ob

le
m

2.
Su

pp
or
tm

ul
tim

od
al
an
d
m
ul
ti-
ob

je
ct
iv
e
op

tim
iz
at
io
n

m
et
ho
ds

3.
It
su
pp
or
te
d
ob
je
ct
-o
ri
en
te
d
Ja
va

ar
ch
ite
ct
ur
e
w
hi
ch

co
ul
d
be

im
pl
em

en
te
d
ov
er

on
th
e
cl
ie
nt
–s
er
ve
r
pa
ra
di
gm

s

(c
on
tin

ue
d)

138 R. A. Khurma et al.

Ta
bl
e
1

(c
on
tin

ue
d)

L
ib
ra
ry

PL
Y
ea
r

O
pt
im

iz
at
io
n
al
go

ri
th
m
(s
)

D
es
cr
ip
tio

n

JM
et
al
[5
3]

Ja
va

20
11

M
an
y
m
et
ah
eu
ri
st
ic
al
go

ri
th
m
s

E
m
pl
oy
s
th
e
ob

je
ct
-o
ri
en
te
d
ar
ch
ite

ct
ur
e,
m
ul
ti-
ob

je
ct
iv
e

al
go

ri
th
m
s,
an
d
pa
ra
lle

la
lg
or
ith

m
s

D
ro
ol
s

Pl
an
ne
r

[5
4]

Ja
va

20
11

Se
to

f
m
et
ah
eu
ri
st
ic
al
go

ri
th
m
s

1.
U
se
s
m
et
ah
eu
ri
st
ic
al
go

ri
th
m
s
to

ta
ck
le
pl
an
ni
ng

pr
ob
le
m
s

2.
U
se
s
si
m
pl
e
m
ec
ha
ni
sm

fo
r
w
ri
tin

g
co
ns
tr
ai
nt
s
in

a
cl
ea
r

m
an
ne
r

O
pt
4J

[5
5]

Ja
va

20
11

D
E
,P

SO
,a
nd

SA
1.

It
pr
ov
id
es

SP
E
A
2
an
d
N
SG

A
2
m
ul
ti-
ob
je
ct
iv
e

al
go

ri
th
m
s

2.
It
su
pp
or
ts
th
e
kn
ap
sa
ck

pr
ob
le
m

3.
M
od
ul
e-
ba
se
d
im

pl
em

en
ta
tio

n;
of
fe
rs
G
U
I
to

co
nfi

gu
re

an
d
vi
su
al
iz
e
th
e
op

tim
iz
at
io
n
pr
oc
es
s

D
E
A
P
[5
6]

Py
th
on

20
12

G
A
,G

P,
E
S,

PS
O
,D

E
It
su
pp
or
ts
pa
ra
lle
lis
m

an
d
su
pp
ly

be
nc
hm

ar
ks

w
hi
ch

co
nt
ai
n
di
ff
er
en
tt
es
tf
un

ct
io
ns

th
at
co
ul
d
be

ut
ili
ze
d
fo
r

ev
al
ua
tio

n

PY
G
M
O

an
d

PY
K
E
P
[5
7]

C
+
+
Py

th
on

20
12

A
da
pt
iv
e
ve
rs
io
n
of

di
ff
er
en
tia

l
ev
ol
ut
io
n
(j
D
E
)

Su
pp

or
ts
cr
ip
tin

g
fo
r
m
as
si
ve
ly

pa
ra
lle

lo
pt
im

iz
at
io
n
of

ae
ro
sp
ac
e-
re
la
te
d
pr
ob

le
m
s
(i
nt
er
pl
an
et
ar
y
tr
aj
ec
to
ry

op
tim

iz
at
io
n)

E
C
J
[5
8]

Ja
va
,C

+
+

20
17

G
A
an
d
G
P

W
id
el
y
us
ed

E
C
lib

ra
ry

w
ith

pa
rt
ic
ul
ar

st
re
ng

th
s
in

G
P,

m
as
si
ve

di
st
ri
bu
te
d
co
m
pu

ta
tio

n,
an
d
co
ev
ol
ut
io
n

Pl
at
E
M
O
[5
9]

M
A
T
L
A
B

20
17

M
ul
ti-
ob

je
ct
iv
e
ev
ol
ut
io
na
ry

al
go

ri
th
m
s

O
pe
n-
so
ur
ce

to
ol

su
pp
or
te
d
by

gr
ap
hi
ca
lu

se
r
in
te
rf
ac
e.
It

in
cl
ud

es
m
an
y
m
ul
ti-
ob

je
ct
iv
e
E
A
s
an
d
te
st
pr
ob

le
m
s

EvoloPy-FS: An Open-Source Nature-Inspired … 139

Table 2 Feature selection frameworks, tools, and libraries
Library PL Year Description

MLC++ [60] C++ 1994 A library of C++ classes and tools for supervised learning. It provides
different implementations for feature selection methods including a
wrapping approach with different methods of searching and selection

Weka [61] Java 1999 The process of feature selection depends on implementing a search
method plus an evaluation step such as ranker search which was applied
together with CorrelationAttributeEval technique. The following are the
feature selection methods supported by Weka:

1. Correlation FS

2. Information gain FS

3. Learner FS

PyMVPA [62] Python 2009 It is a free software package which was designed to ease the statistical
and the analytical task for the large datasets and support an interface for
a variety of algorithms including classification, regression, and feature
selection

Infosel++ [63] C++ 2010 1. It is a large package in C++ library for feature selection and ranking

2. It includes a collection of classes for feature selection, and it aids the
users for determining the suitable algorithm to be applied for solving a
given problem

3. FS algorithms in the Infosel++ can be categorized into four sets:
ranking methods, ranking with shifting of highly correlated features,
ranking with removal of highly correlated features, and other methods
such as Markov blanket approximation

PyBrain [64] Python 2010 Bybrain supports feature Gaussian processes, the evolving algorithm and
SVM wrapper

KEEL [65] Java 2011 KEEL tool has a dedicated family of algorithms for feature selection
including: MIFS, LVF, Focus, Relief, Las Vegas, LVW, ABB–IEP,
ABB–LIU, ABB–MI, Full–IEP, Full–LIU, Full–MI, Relief–F, LVF–IEP,
SA–IEP, SA–LIU, SA–MI, SBS–IEP, SBS–LIU–, SBS–MI–, SFS–IEP,
SFS–LIU, and SFS–MI

Scikit-learn [66] Python 2011 1. It is a tool that could be utilized in the fields of data mining and
machine learning. Furthermore, the code is open-source which helps and
eases the researchers job

2. Built on NumPy, SciPy, and Matplotlib

3. Includes modules such as sklearn library which can be used for FS

Mlpy [67] Python 2012 1. mlpy is a Python library which constructed using other libraries such
as NumPy, SciPy, and GNU. In addition, it provided open-source code
implementation

2. mlpy was used in the multiple applications including FDA, SRDA,
and PCA.

mlpack [68] C++ 2013 It is a fast, flexible library which supports C++ libraries. Its modules can
be integrated into a larger-scale machine learning solutions. The
algorithms are implemented as a simple command line programs and
support PCA for feature reduction

Orange [69] C++ 2013 It is a structured library used as a data mining tool. The lower-level
procedures include data filtering, probability assessment, and feature
scoring. These are assembled to serve the upper levels in the hierarchy
such as classification. The components of the lower levels (classes and
data structures) are coded using C++ where the components of the higher
levels are written in Python

(continued)

140 R. A. Khurma et al.

Table 2 (continued)
Library PL Year Description

FeatureIDE [70] C++ 2014 It is a framework which used open-source code and utilized clips for
developing systems

DWFS [71] MPI 2015 1. A Web-based tool for feature selection that is tailored to solve several
types of problems

2. DWFS is wrapper-based with GA implemented as a search strategy

3. A large feature space can be examined using parallel GA

4. GA parameters are tuned based on the application

5. Different filter approaches can be utilized

FSLib [72] MATLAB 2016 It is a MATLAB FS library which includes many algorithms such as
CFS, DGUFS, ECFS, Fisher, FSASL, FSV, ILFS, LASSO, LLCFS, LS,
MCFS, MI, Relief–FRFE, UDFS, UFSOL, L0, Inf–FS, and mRMR

In [39], the authors presented GAlib library which applied GA for parallel envi-
ronment. Another work in [40] was called evolving objects (EOs). In the same year,
two other libraries were developed, namely TEA centering [41], which supported
complex genotypes, and OpenTS [42], which implemented tabu search algorithm.
PISA library was presented as a language-independent library which included most
EAs and simulated annealing [43]. Later, ParadisEOwas developed [44]. C# Heuris-
ticLab library [45] and JavaEvA [46] were developed in the next year. UOF [47] was
developed as a generic framework to solve new optimization problems. A GEATbx
[48] was developed for global optimization using MATLAB. CIlib [49] provided
Java open-source structure and easily refined code. JCLEC [50] followed the prin-
cipal of object-oriented. A Python framework, namely Pyevolve, was presented in
[51]. Later on, several evolutionary Java frameworks were developed, namely EvA2
[52], jMetal [53], Drools Planner [54], and Opt4J [55]. DEAP Python framework
was developed in [56] for applying optimization with parallel features. PYGMO and
PYKEP frameworks [57] with C++ and Python programming languages were used
for massively parallel optimization of aerospace-related problems. An EC library,
namely ECJ, was developed in [58] with a particular strengths in GP. Recently, a
MATLAB library called PlatEMO [59] was developed as multi-objective evolution-
ary open-source tool.

All the aforementioned works summarized the main EC frameworks in the liter-
ature. On the other hand, several specialized FS frameworks were developed sepa-
rately. Examples on these FS frameworks were MLC++ [60], Weka, Java tool [61],
PyMVPA [62], Infosel++ library [63], PyBrain, Python FS [64]. A useful tool, name-
ly KEEL, was developed in Java with dedicated family of algorithms for FS [65].
scikit-learn [66] is a Python tool, which contains many FS methods, which was built
on NumPy, SciPy, andMatplotlib. One year later, another Python library called mlpy
[67] was developed and used in different applications. Several C++ FS framework-
s were developed successively, namely mlpack [68], Orange [69], and FeatureIDE
[70]. DWFS [71] was used as a FS Web-based tool tailored to solve several types of
problems. A recent MATLAB FS library called FSLib was presented in [72].

EvoloPy-FS: An Open-Source Nature-Inspired … 141

3 Why Python

Python is a high-level programming interpreted language which was designed by
Rossum in 1990 [72]. It was built based on scripts to achieve multiple general targets.
Python has a considerable community since its characteristics and properties have
attracted serious followers and researchers. The following points are some of these
properties.

1. Extensibility means the possibility of extending the legacy code by adding new
functionalities and gluing multiple components.

2. It is popularly used in the context of data analysis.
3. Elegant syntax (pseudo-code like syntax).
4. Promotes code readability and maintainability (intensive work with less code).
5. Availability of substantial number of libraries.
6. Supports modularity.
7. Platform independent(cross-platform) so it is able to span multiple platforms

such as Linux and different versions of Windows operating system.
8. Availability of data structures such as lists, arrays, and dictionaries.
9. Dynamic typing and dynamic binding.
10. Overhead and high cost in the execution of the interpreted program.

The decision for choosing a Python depends on our concerns. If we are interested
in speed of development and postponed coding, then Python is a good choice, while
it is not recommended when the main concern is reducing the cost of code execution
[73].

4 EvoloPy Versions

This framework is built upon our previous EvoloPy version [74]. The aim of the
original EvoloPy was providing a Python framework which is open source , supports
multiple platforms, and implements a considerable number of well-regarded and
state-of-the-artmetaheuristic algorithms. Itwas utilizedby researchers for optimizing
their problems and helped them to design new algorithms and improve current ones.
Python was used for implementing the optimizers and increasing their robustness
and portability. EvoloPy source code was published on GitHub - https://github.com/
7ossam81/EvoloPy .

The framework was designed based on four basic components: the optimizer
component, which is the main interface where the user can select the optimization
algorithms to run and adjust the parameters such as the number of runs, population
size, andmaximum iterations. In the same script, the user can selectwhich benchmark
function to run. The second component in EvoloPy framework is the metaheuristic
algorithms. It included eight recent nature-inspiredmetaheuristic optimizers, namely
particle swarm optimization (PSO), firefly algorithm (FFA), gray wolf optimizer

https://github.com/7ossam81/EvoloPy
https://github.com/7ossam81/EvoloPy

142 R. A. Khurma et al.

(GWO), whale optimization algorithm (WOA), multi-verse optimizer (MVO), moth-
flame optimization (MFO) algorithm, bat algorithm (BAT), and cuckoo search (CS).
The third component is the benchmark functions, which included several common
benchmark problems. The last component is result management, which was used to
export the results and store them in CSV files.

Experiments were designed to compare the performance of metaheuristic algo-
rithms implemented in Python and their peers implemented in MATLAB in terms
of the running time. The other dimension that was investigated in the experiments
was the influence of the size of the problem (dimension size) on running time. It was
appeared from the results that there was MATLAB and Python does not significant-
ly differ when using small dimension size. On the other hand, this difference was
remarkably increased when the size of dimensionality was increased.

The other variation of EvoloPy was EvoloPy-NN framework which provided
classical and recent nature-inspired metaheuristic for training a single-layer multi-
layer perceptron neural network (NN) [75]. The list of implemented optimizers that
were used to train NN was PSO, MVO, GWO, and MFO [76, 77]. The main file
in EvoloPy-NN is main.py, which serves as an interface for the framework where a
user can set up his/her experiment by selecting optimizers, datasets, number of runs,
maximum number of iterations, number of neurons, and population size. The source
code is freely available on https://github.com/7ossam81/EvoloPy-NN.

5 Framework Overview

Starting from our objective, building an integrated environment that provides various
optimization capabilities, we will continue on the same path by developing a new
EvoloPy-FS for tackling different FS-related aspects. EvoloPy-FS interface consist-
s of five components, which are optimizer, swarm intelligence algorithms, fitness
functions, transfer functions (TFs), and results. Each one of these components is
discussed in a special subsection.

5.1 The Optimizer

This is the main script, where a user can configure the experiments and adjust initial
settings. For example, a user can select the optimization algorithm, specify the fitness
function to be applied, and set up the parameters including number of runs, size of
population, and number of iterations.

https://github.com/7ossam81/EvoloPy-NN

EvoloPy-FS: An Open-Source Nature-Inspired … 143

5.2 SIs Algorithms

Each implemented SI algorithm has a separated script. A set of SI algorithms that
have been added to the framework until now are:

1. Binary particle swarm optimization (BPSO)
2. Binary firefly algorithm (BFFA)
3. Binary gray wolf optimizer (BGWO)
4. Binary whale optimization algorithm (BWOA)
5. Binary multi-verse optimizer (BMVO)
6. Binary moth-flame optimizer (BMFO)
7. Binary bat algorithm (BBAT)
8. Binary cuckoo search algorithm (BCS).

5.3 Fitness Functions

The framework consists of a set of user-defined fitness functions. These functions
stand for doing a set of issues; for example, some fitness functions are implemented
in different ways for loading the data. Other functions focus on applying different
evaluation criteria.Moreover, somefitness functionswere used to show thepossibility
of applying different training and testing methodologies. The most important fitness
functions are those implement wrapper and filter–wrapper approaches (F10 and F3),
respectively, as will be discussed next.

5.3.1 Data Loading Techniques

It shows the possibility of applying different techniques for loading the data using
Python:

1. Using standard Python libraries: Python application programming interface (API)
provides modules and functions that can be used to load data. For example, we
used:
f rom sklearn.datasets import load_iris
iris = load_iris()
x = iris.data
y= iris.target
n_samples, n_ f eatures = iris.data.shape

2. Load CSV file with pandas from URL and using read_csv() function:
f rom pandas import read_csv
url=“https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-
diabetes.data.csv”.
names = [′preg′,′ plas′,′ pres′,′ skin′,′ test′,′ mass′,′ pedi′,′ age′,′ class′].

https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv

144 R. A. Khurma et al.

data f rame = readcsv(url, names = names)
array = data f rame.values.
A = array[:, 0 : 8]
B = array[:, 8]
no_ f eaturesd = len(names) − 1

3. Load CSV file with pandas from the current directory and using read_csv() func-
tion:
import pandas as pd
data_set:pd.read_csv(”C:/Users/tc/Desktop/breast–
cancer–wisconsin.csv”)
data_set.head()
data=data_set.iloc[:,0:10].values
target=data_set.iloc[:, -1].values

5.3.2 Evaluation Measurements

There are a set of fitness functions that are applied to return different evaluation
measurements:

1. Accuracy:

It can be computed using Python in two ways:

• Computed directly:

acc = f loat((ytest == ypred).sum())/ypred .shape[0]

• Importing accuracy_score from sklearn.matrices:
f rom sklearn.metrics import accuracy_score.
acc = f loat(accuracy_score(ytest, ypred)).

2. Area under the curve (AUC):
AUC=roc_auc_score(Btest,Bpred).

3. Confusion matrix:
f rom sklearn import metrics. metrics.con f usion_matrix(ytest, ypred).

4. Sensitivity, specificity, and Gmean:
TP=0 %true positive
FP=0 %false positive
TN=0 %true negative
FN=0 %false positive

f or i in range(len(Bpred)) :

i f Btest[i] == 1 and Bpred [i] == 1:
TP+= 1

EvoloPy-FS: An Open-Source Nature-Inspired … 145

i f Bpred [i] == 1 and Btest[i]! = Bpred [i] :
FP+= 1
i f Btest[i] == 0 and Bpred [i] == 0 :
TN+= 1
i f Bpred [i] == 0 and Btest[i]! = Bpred [i] :
FN+= 1

TPR=TP/np.sum(Btest) %Recall/Sensitivity
TNR=TN/np.sum(Btest) %Speci f icity
Gmean=np.sqrt(TPR ∗ TNR)

5.3.3 Training and Testing Methodologies

The fitness function script shows different training and testing methodologies:

1. Simple split:
f rom sklearn.model_selection importtrain_test_split.
xtrain, xtest, ytrain, ytest=train_test_split(x,y,test_size = 0.33, random_state = 1)

2. Cross validation:
scores=cross_val_score(knn, reduced_x_dataset,y,cv=10, scoring=’accuracy’).
average_scores = np.mean(scores).

3. Checking for overfitting:
metrics. f 1_score(ytest, ypred , average=′′macro′′) metrics. f 1_score(ytrain,
knn.predict(reduced_xtrain), average =′′ macro′′).

5.3.4 Wrapper Approach

The fitness functions also implement a wrapper approach in different ways:

1. By doing the binary conversion for the received real chromosome inside the object
function in two ways:

• Using binarizer:
f rom sklearn.preprocessing import Binarizer I = np.reshape(I , (1,−1))
binarizer = Binarizer(). f it(I)
t = Binarizer(). f it_trans f orm(I)

• Using threshold:
threshold = .2
f or i in range(0, len(I)) : i f I [i] ≥ threshold :
I [i] = 1
else:
I [i] = 0

146 R. A. Khurma et al.

2. Build binary optimizers so that the generated individuals are binary. In this case,
there is no need for all Python statements in point 1 above since the received in-
dividual by the object function is binary. For example, the initialization statement
in BPSO which defines a set of binary individuals is:
pos=numpy.random.randint(2, size=(PopSize, dim)).

3. After performing binary conversion for individuals, there is a need to make sure
that the dimension of the individual equals the number of features in the dataset
by configuring the dimension in getFunctionDetails.The individual and the pop-
ulation are represented by 1-D and 2-D arrays, respectively, using the NumPy
library.

4. Generate the reduced dataset in such a way the value 1 in the individual cor-
responds to a selected feature and the value 0 indicates that the feature is not
selected.
reduced f eatures = []
f or index in range(0, n_ f eatures):
i f (I [index] == 1)
reduced f eatures.append(index)
reduced_xtrain=xtrain[:, reduced f eatures] reduced_xtest = xtest[:, reduced
f eatures]

5. Call a rapid classifier such as Knn to evaluate the candidate solution and generate
the fitness value based on the reduced dataset.
knn = KNeighborsClassi f ier(n_neighbors=4)
knn. f it(reduced_xtrain, ytrain)
ypred = knn.predict(reduced_xtest)

6. These steps are repeated until the maximum number of iterations is reached.

5.3.5 Filter Approach

Fitness functions implement different filter approaches, and a user can also apply
a hybrid filter–wrapper approach. The filter is first applied to do a rapid feature
reduction based on some sorts of statistics without any learning mechanism (filtering
stage), and then a second stage of feature reduction is applied to the reduced dataset
generated by a filter (wrapper stage). This approach can be applied with a large
size datasets. These filters were downloaded from a scikit-learn FS Python library
hosted on http://featureselection.asu.edu/index.php with a little bit modification on
ensemble filter.

The applied filtering techniques in the framework are:

1. chi-square filter.
f rom sklearn. f eature_selection import SelectKBest
f rom sklearn. f eature_selection import chi2
x_a f ter_ f ilter1=SelectKBest(chi2, k=2). f it_trans f orm(x, y).

http://featureselection.asu.edu/index.php

EvoloPy-FS: An Open-Source Nature-Inspired … 147

2. Variance filter.
f rom sklearn. f eature _selection importV arianceThreshold .
selector = VarianceThreshold(.2)
x_a f ter_ f ilter2 = selector. f it_trans f orm(x)

3. Ensemble-based filter:
New filter is proposed in this framework. The filter works by generating the im-
portance of all features using the ExtraTreeClassi f ier, and then the features with
importance greater than the computed average importance are selected.
reduced_ f eature_list = []
f rom sklearn.ensemble import ExtraTreesClassi f ier
model=ExtraTreesClassi f ier().
model. f it(x, y).
f eature_importances_list=np.array(model. f eature_importances_). average_
f eature_importance=np.mean(f eature_importances_list). f or i in range(0,
len(model. f eature_importances_)) :
i f model. f eature_importances_[i] ≥ average_ f eature_importance:reduced_
f eature_list.append(i)

5.4 Transfer Functions (TFs)

These include V-shaped TFs and S-shaped TFs. TFs are applied as a mechanism for
binary conversion of the individuals after applying the updated operators. Table3
shows the Python implementation for these functions. The libraries necessary to im-
plement these functions are scipy,math, numpy, sk f uzzy, andMatplotlib is necessary
for plotting the functions. Figures1 and 2 depict these functions.

5.5 Result Component

All results are stored in CSV file for result exportation purposes. Figure3 shows
the main components and relations in the EvoloPy-FS framework. It represents the
framework using twelve classes. The optimizer, benchmarks, and solution are used to

Table 3 Transfer functions

V-shaped TFs S-shaped TFs

v1 = abs(er f ((pi/2) ∗ x)) s1 = 1/(1 + np.exp(−2 ∗ x))

v2 = abs(np.tanh(x)) s2 = 1/(1 + np.exp(−x))

v3 = abs(x/np.sqrt(1 + np.square(x))) s3 = 1/(1 + np.exp(−x/3))

v4 = abs((2/pi) ∗ np.arctan((pi/2) ∗ x)) s4 = 1/(1 + np.exp(−x/2))

148 R. A. Khurma et al.

Fig. 1 V-shaped TFs

Fig. 2 S-shaped TFs

EvoloPy-FS: An Open-Source Nature-Inspired … 149

Fig. 3 EvoloPy-FS framework

manage the optimization process. The TF benchmark is used for binary conversion.
The other eight classes are corresponding to eight SI algorithms; each one performs
its optimization job independently.

6 Design Issues

NIAs in general are classified under the population-based metaheuristic umbrella.
In contrast to single-solution local search category, the population-based algorithm-
s adopt multi-solution global search strategy. Population-based approach starts by
initializing a set of possible (candidates) solutions that satisfy the constraints of the
problem under investigation. Normally, the population is represented by 2-D array
structure and each candidate solution is represented by 1-D array structure (vector).
With regard to FS problem, the length of the chromosome (individual and solution)
represents the dimensionality of the problem (number of features or problem size).
Each gene value in the chromosome represents the feature (either selected or not
selected). The gene value is assigned to 1 when the feature was selected or 0 when
the feature was not selected. This representation scheme for the individuals is called
binary encoding, where each gene is assigned to either 1 or 0.

150 R. A. Khurma et al.

7 Experiments and Discussion

The experiments of previous version of EvoloPy [74] focused on comparing the
Python and MATLAB and showed the effect of the programming code type on the
optimization problem.The resultswere positives in terms of running time and demon-
strated the power and efficiency of EvoloPy tool for solving high-dimensionality
problems.

In this version of EvoloPy, the target is to focus more on FS problem and utiliz-
ing EvoloPy-FS for tackling different aspects related to FS problem. For achieving
this purpose, we started by investigating the behavior of applying different wrap-
per approaches on different datasets with different characteristics. These approaches
were compared in terms of three evaluation measurements: error rate, number of
features, and the running time. The effect of integrating the filter approach with
wrapper approach was demonstrated by selected one popular filtering method called
chi-square from a scikit-learn FS Python library hosted on http://featureselection.
asu.edu/index.php. Chi-square filter is well known for its robustness with respect to
the data distribution and the simplicity in computations.

The experiments were performed on a personal machine with AMDAthlon Dual-
Core QL-60 CPU at 1.90GHz and a memory of 2 GB running Windows 7 Ultimate
64-bit operating system. In the conducted experiments, the population size, the num-
ber of iterations, and the number of runs were set to 10, 100, and 20, respectively,
for the eight tested algorithms. KNN classifier with Euclidean distance measure
(K = 5 [78]) has been used for classification evaluation in the experiments. A simple
split training and testing methodology was applied in the experiments with 33% of
instances in every case were reserved for testing and the rest of them were employed
for training.

The experiments were based on applying a single objective error rate fitness func-
tion as appears in Eq.1. This was the same as the fitness function implemented in
[79]. The reason behind that is that our attention is minimizing the classification
error rate and discovering the most accurate wrapper with the minimal average clas-
sification error over all datasets. Another reason is that most of the existing studies
adopt the classification performance as a fitness function in their works [80]. A third
reason is that the experiments are not tailored to a certain application; instead, we
have worked on common benchmark datasets. So that, we could not determine a
priori the application-specific parameters that balance the classification error and
the number of features as used in other works. This adopts a fitness function that
simultaneously increases the classification performance and minimizes the number
of selected features [81, 82].

Fitness = ErrorRate (1)

The experiments were performed on three stages as follows.

http://featureselection.asu.edu/index.php
http://featureselection.asu.edu/index.php

EvoloPy-FS: An Open-Source Nature-Inspired … 151

1. Wrapper-based experiments (without filters):
In this stage, the behavior of the 8 optimization algorithms (BPSO, BMVO,
BMFO, BGWO, BWOA, BFFA, BBAT, and BCS) was investigated on 30 d-
ifferent well-regarded datasets with different specifications. The datasets were
downloaded from different sources and repositories such as https://archive.ics.
uci.edu, https://www.kaggle.com/datasets, and http://featureselection.asu.edu/
index.php. Tables 4 and 5 show the details of these datasets. Three evaluation
measurements were used for assessing the performance of each optimizer and
its capability in performing FS. These evaluation metrics are error rate, number
of selected features, and the running time. Tables6, 7 and 8 show the results of
this stage of experiments.

2. Hybrid filter–wrapper-based experiments (filters integrated with wrappers):
The chi-square filter was integrated with the previous eight optimizers (wrap-
pers). For the chi-square filter, there is one significant parameter called K which
represents the predetermined number of features to which the filter should make
the reduction (number of selected features by chi-square filter). For example,
if the dataset consists of 7000 features and K assigned to 1000 features, then
the new size of the reduced dataset after applying chi-square filter is 1000 fea-
tures. The question that can be asked in this context is what is the best value
that can be assigned to K? and how will it affect the wrapper results when the
chi-square filter integrated with wrappers? To show the influence of the value
of the K parameter on the different datasets, 3 different FS ratios (FSR) were
experimented 25, 35, and 75%. For example, when FSR = 25% and the origi-
nal dataset dimensionality is 325 features, then K = 0.25 ∗ 325 = 81 features
which is the size of the reduced dataset after applying the chi-square. In this stage
of experiments, we have selected a sample that consists of six datasets with
different specifications regarding the number of instances and the dimension-
ality: Breastcancer, penglung, Wave f romEW , KrvskpEW , orlraws10P, and
CLL_SUB_111. Tables 9, 10, and 11 show the results of this stage of
experiments.

3. Filter-based experiments (without wrappers):
In these experiments, the chi-square filter was applied separately without wrap-
pers on the previously selected datasets and using also the three FSRs. Table12
shows the results of this stage of experiments.

The results of first-stage experiments showed that BMFO registered the minimum
error rate over 11 datasets and the minimum standard deviation over 13 datasets, and
then BMVO achieved the minimum error rate over 6 datasets. BPSO was the highest
stability in error rate results by achieving the minimum error standard deviation over
15 datasets. On the other hand, with respect to the number of features, BMVOwas the
best optimizer in feature reduction over 16 datasets, and then BPSOwas the best over
9 datasets. BPSO achieved the least standard deviation with respect to the number
of selected features over 17 datasets, and then BMFO was the least over 10 datasets.
From Table7, we can compute the FSR ratio for each dataset. FSR indicates the

https://archive.ics.uci.edu
https://archive.ics.uci.edu
https://www.kaggle.com/datasets
http://featureselection.asu.edu/index.php
http://featureselection.asu.edu/index.php

152 R. A. Khurma et al.

Table 4 List of the used 30 datasets, sorted based on the number of features

No. Dataset No. of features No. of instances

1 Vertebral 6 310

2 liver 6 345

3 diabetes 8 769

4 Breastcancer 9 699

5 Tic-tac-toc 9 958

6 WineEW 13 178

7 HeartEW 13 270

8 Exactly 13 1000

9 Exactly2 13 1000

10 M-of-n 13 1000

11 Zoo 16 101

12 Vote 16 300

13 CongressEW 16 435

14 Lymphography 18 148

15 parkinsons2 22 196

16 SpectEW 22 267

17 BreastEW 30 569

18 Ionosphere 34 351

19 KrvskpEW 36 3196

20 WavefromEW 40 5000

21 SonarEW 60 208

22 clean1 166 476

23 semeion 265 1593

24 penglung 325 73

25 lung_discrete 325 73

26 Colon 2000 62

27 GLIOMA 4434 40

28 Leukemia 7129 72

29 orlraws10P 10, 304 100

30 CLL_SUB_111 11, 340 111

number of selected features to the number original dataset features (reduced dataset
size: original dataset size). Table5 illustrates FSRs for all datasets.

From Table5, we can notice that the range for FSRs was between [36% and 69%]
and that FSR was small for large dimensionality datasets and it became larger for
small dimensionality dataset. The average FSR for all datasets was 48.5% which
indicates that the size of the reduced dataset is almost equal half of the size of the
original dataset.

EvoloPy-FS: An Open-Source Nature-Inspired … 153

Table 5 FS ratio summary of 30 selected datasets

Breastcancer BreastEW clean1 Colon CongressEW

4:9 = 44% 14:30 = 47% 74:166 = 45% 740:2000 = 37% 7:16 = 44%

diabetes Exactly Exactly2 HeartEW Ionosphere

4:8 = 50% 6.5:13 = 50% 6.1:13 = 47% 9:13 = 69% 13:34 = 38%

KrvskpEW Leukemia liver Lymphography M-of-n

18.7:36 = 52% 2728:7129 = 38% 4:6 = 67% 8.8:18 = 49% 7.5:13 = 58%

parkinsons2 penglung semeion SonarEW SpectEW

9.8:22 = 45% 149:325 = 46% 124:265 = 47% 27:60 = 45% 9.6:22 = 44%

Tic-tac-toc Vertebral Vote WavefromEW WineEW

5:9 = 56% 2.7:6 = 45% 6.5:16 = 41% 21:40 = 53% 6.5:13 = 50%

Zoo orlraws10P CLL_SUB_111 GLIOMA lung_discrete

8.4:16 = 53% 3698:10304 =
36%

4303:11340 =
38%

1700:4434 = 38% 142:325 = 44%

Finally, with respect to the running time measurement, the BBAT optimizer was
the fastest over 12 datasets, then BPSO was the fastest over 9 datasets, and BFFA
also was the fastest over 8 datasets. BPSOwas the most stable optimizer with respect
to the running time by achieving the least standard deviation in time over 12 datasets.

The results of the second-stage experiments were as follows.

• Breastcancer results: The error rate for all wrappers was increased when the chi-
square with FSR assigned to either 25% or 35% was integrated with them. In
contrast, the error rate was decreased when the FSR was assigned to 75%. So,
the integration of chi-square with wrappers was better than applying the wrappers
alone only when the FSR was 75%.

• penglung results: The error rate increased when chi-square was integrated with
all optimizers regardless of FSR. So, best error rate results were achieved when
wrappers applied alone without chi-square.

• Wave f romEW results: For almost all optimizers, the error rate increased when
FSRwas assigned to 25%. On the other hand, the error rate decreased dramatically
for all optimizers when the FSR was assigned to 35% and 75% and the minimum
error rates achieved when FSRwas 35%. For FSR of 35%, the error rate decreased
3.3%, the feature reduction ratio was 75%, and the running time reduced by 47%
of the time needed for applying the wrapper without chi-square.

• KrvskpEW results: For all optimizers, the error rate increased when FSR was
assigned to 75%. On the other hand, the error rate decreased dramatically for all
optimizers when the FSR was assigned to 35% and 25% and the minimum error
rates achieved when FSR was 35%. For FSR of 35%, the error rate decreased by
42%. The feature reduction ratio was 80.6%, and the running time reduced by 38%
of the time needed for applying the wrapper without chi-square.

154 R. A. Khurma et al.

Ta
bl
e
6

W
ra
pp

er
re
su
lts

ba
se
d
on

er
ro
r
ra
te
ev
al
ua
tio

n
m
et
ri
c

B
en
ch
m
ar
k

B
PS

O
B
M
V
O

B
M
FO

B
G
W
O

A
vg
.e
rr
or

ra
te

fo
r
al
lw

ra
pp
er
s

A
vg
_e
rr
or

St
d_
er
ro
r

A
vg
_e
rr
or

St
d_
er
ro
r

A
vg
_e
rr
or

St
d_
er
ro
r

A
vg
_e
rr
or

St
d_
er
ro
r

B
re
as
tc
an
ce
r

0.
05
73
1

0.
00
38
4

0.
04
57
1

0.
01
18
9

0.
04
76
9

0.
00
34
3

0.
03
83
1

0.
00
51
2

0.
04
60
5

B
re
as
tE
W

0.
08
85
6

0.
00
75
8

0.
05
33
7

0.
01
69
0

0.
05
15
2

0.
00
70
0

0.
05
16
0

0.
01
77
1

0.
05
90
8

cl
ea
n1

0.
31
16
3

0.
00
65
9

0.
26
48
2

0.
04
29
9

0.
30
45
2

0.
03
05
1

0.
29
90
3

0.
05
16
5

0.
29
96
5

C
ol
on

0.
33
37
9

0.
01
09
8

0.
34
84
3

0.
08
47
8

0.
32
72
9

0.
00
88
2

0.
32
85
7

0.
06
71
7

0.
35
29
1

C
on
gr
es
sE
W

0.
14
33
5

0.
01
08
5

0.
07
22
5

0.
01
65
8

0.
08
33
0

0.
01
17
0

0.
09
67
0

0.
03
51
1

0.
09
57
4

di
ab
et
es

0.
32
91
1

0.
00
70
1

0.
27
27
4

0.
01
22
4

0.
26
26
2

0.
00
07
5

0.
31
07
2

0.
04
01
2

0.
28
32
6

E
xa
ct
ly

0.
40
06
3

0.
00
30
8

0.
36
90
2

0.
05
98
8

0.
31
46
2

0.
05
44
9

0.
38
76
4

0.
04
43
5

0.
36
43
0

E
xa
ct
ly
2

0.
30
45
6

0.
00
37
8

0.
31
45
3

0.
02
64
9

0.
31
99
8

0.
01
46
1

0.
31
55
0

0.
05
55
1

0.
31
48
5

H
ea
rt
E
W

0.
19
85
5

0.
00
90
3

0.
16
18
5

0.
04
99
0

0.
12
97
7

0.
01
79
1

0.
14
68
0

0.
05
95
8

0.
15
83
5

Io
no
sp
he
re

0.
19
97
3

0.
00
82
0

0.
20
00
4

0.
04
22
0

0.
18
83
1

0.
02
70
4

0.
18
97
9

0.
04
58
9

0.
19
03
0

K
rv
sk
pE

W
0.
26
53
4

0.
01
30
5

0.
06
99
2

0.
03
11
4

0.
05
41
5

0.
00
88
8

0.
12
76
6

0.
05
44
4

0.
09
97
7

L
eu
ke
m
ia

0.
60
58
8

0.
00
80
0

0.
60
80
0

0.
03
62
8

0.
61
86
3

0.
01
68
4

0.
62
50
0

0.
00
00
0

0.
61
75
1

liv
er

0.
37
33
4

0.
00
85
4

0.
30
16
7

0.
01
25
3

0.
29
82
2

0.
00
19
7

0.
34
86
8

0.
01
24
7

0.
31
96
4

Ly
m
ph
og
ra
ph
y

0.
39
74
4

0.
00
95
4

0.
36
87
6

0.
08
57
4

0.
40
73
5

0.
04
82
7

0.
38
24
7

0.
06
74
2

0.
38
96
3

M
-o
f-
n

0.
29
77
3

0.
01
13
9

0.
16
62
4

0.
05
17
0

0.
14
27
5

0.
04
61
2

0.
22
06
9

0.
05
49
0

0.
18
72
4

pa
rk
in
so
ns
2

0.
35
11
4

0.
00
59
8

0.
31
76
4

0.
03
02
8

0.
33
50
7

0.
03
45
1

0.
38
86
6

0.
03
44
9

0.
36
19
1

pe
ng
lu
ng

0.
45
20
6

0.
00
99
3

0.
40
01
9

0.
05
12
1

0.
40
45
6

0.
00
52
1

0.
40
00
0

0.
05
13
0

0.
40
63
7

se
m
ei
on

0.
07
60
5

0.
00
17
8

0.
06
70
9

0.
00
95
6

0.
06
16
5

0.
00
29
5

0.
06
09
3

0.
00
79
9

0.
06
46
3

So
na
rE
W

0.
51
24
1

0.
01
44
7

0.
45
32
8

0.
09
97
9

0.
42
97
2

0.
05
27
7

0.
53
69
6

0.
07
88
3

0.
48
02
9

Sp
ec
tE
W

0.
24
04
5

0.
00
32
1

0.
24
51
8

0.
01
89
3

0.
23
84
8

0.
01
17
2

0.
24
66
5

0.
02
26
7

0.
23
99
7

T
ic
-t
ac
-t
oc

0.
34
06
8

0.
00
63
4

0.
30
19
0

0.
02
39
0

0.
33
90
6

0.
00
40
3

0.
29
39
3

0.
02
41
6

0.
31
60
0 (c
on
tin

ue
d)

EvoloPy-FS: An Open-Source Nature-Inspired … 155
Ta

bl
e
6

(c
on
tin

ue
d)

B
en
ch
m
ar
k

B
PS

O
B
M
V
O

B
M
FO

B
G
W
O

A
vg
.e
rr
or

ra
te

fo
r
al
lw

ra
pp
er
s

A
vg
_e
rr
or

St
d_
er
ro
r

A
vg
_e
rr
or

St
d_
er
ro
r

A
vg
_e
rr
or

St
d_
er
ro
r

A
vg
_e
rr
or

St
d_
er
ro
r

V
er
te
br
al

0.
15
48
7

0.
00
57
6

0.
11
78
1

0.
00
05
0

0.
11
76
8

0.
00
00
9

0.
11
47
8

0.
01
62
4

0.
12
37
2

V
ot
e

0.
13
57
3

0.
00
98
9

0.
08
07
7

0.
03
26
6

0.
10
57
9

0.
02
14
9

0.
10
30
5

0.
04
85
6

0.
09
79
9

W
av
ef
ro
m
E
W

0.
35
08
7

0.
01
00
5

0.
26
31
2

0.
01
54
2

0.
24
06
8

0.
00
99
6

0.
25
94
5

0.
01
75
0

0.
26
47
4

W
in
eE

W
0.
10
59
8

0.
01
35
1

0.
05
48
3

0.
04
78
7

0.
03
50
3

0.
01
28
3

0.
03
24
5

0.
04
34
6

0.
04
44
9

Z
oo

0.
29
80
5

0.
01
84
0

0.
19
06
8

0.
04
93
5

0.
20
43
2

0.
00
73
8

0.
24
54
5

0.
10
26
0

0.
21
45
5

or
lr
aw

s1
0P

0.
58
18
6

0.
00
99
0

0.
56
13
6

0.
03
14
3

0.
54
54
5

0.
00
00
0

0.
54
54
5

0.
00
00
0

0.
55
39
8

C
L
L
_S

U
B
_1
11

0.
66
05
4

0.
01
92
6

0.
61
77
3

0.
09
37
8

0.
76
09
2

0.
01
58
3

0.
75
38
5

0.
05
35
3

0.
70
75
8

G
L
IO

M
A

0.
21
38
3

0.
02
29
4

0.
16
90
8

0.
01
08
1

0.
16
66
7

0.
00
00
0

0.
16
66
7

0.
00
00
0

0.
17
52
6

lu
ng

_d
is
cr
et
e

0.
76
57
5

0.
01
60
0

0.
71
95
6

0.
13
04
6

0.
75
77
5

0.
03
04
4

0.
74
37
5

0.
07
56
0

0.
75
78
5

B
en
ch
m
ar
k

B
W
O
A

B
FF

A
B
B
A
T

B
C
S

A
vg
.e
rr
or

ra
te

fo
r
al
lw

ra
pp
er
s

A
vg
_e
rr
or

St
d_
er
ro
r

A
vg
_e
rr
or

St
d_
er
ro
r

A
vg
_e
rr
or

St
d_
er
ro
r

A
vg
_e
rr
or

St
d_
er
ro
r

B
re
as
tc
an
ce
r

0.
04
50
1

0.
01
09
1

0.
04
46
9

0.
01
09
3

0.
04
30
1

0.
00
92
4

0.
04
66
3

0.
00
80
2

0.
04
60
5

B
re
as
tE
W

0.
05
66
2

0.
01
30
6

0.
05
37
3

0.
01
33
2

0.
06
24
5

0.
02
03
5

0.
05
47
7

0.
00
89
5

0.
05
90
8

cl
ea
n1

0.
29
93
4

0.
03
02
1

0.
30
63
3

0.
02
73
1

0.
31
28
3

0.
02
46
0

0.
29
86
9

0.
02
12
6

0.
29
96
5

C
ol
on

0.
34
20
7

0.
07
05
4

0.
32
83
6

0.
06
66
7

0.
36
84
3

0.
07
25
2

0.
44
63
6

0.
17
96
0

0.
35
29
1

C
on
gr
es
sE
W

0.
08
33
3

0.
01
62
5

0.
08
94
2

0.
03
13
3

0.
11
35
2

0.
03
59
3

0.
08
40
5

0.
01
84
7

0.
09
57
4

di
ab
et
es

0.
26
55
8

0.
00
37
4

0.
26
19
0

0.
00
00
0

0.
29
75
3

0.
02
75
5

0.
26
58
9

0.
00
36
8

0.
28
32
6

E
xa
ct
ly

0.
35
41
7

0.
04
13
6

0.
35
33
5

0.
05
28
6

0.
38
89
0

0.
03
98
6

0.
34
60
8

0.
02
96
0

0.
36
43
0

E
xa
ct
ly
2

0.
30
86
1

0.
02
29
1

0.
31
48
5

0.
01
46
7

0.
32
09
1

0.
06
21
8

0.
31
98
4

0.
02
62
8

0.
31
48
5

H
ea
rt
E
W

0.
14
73
7

0.
04
95
4

0.
15
92
8

0.
04
71
3

0.
17
05
8

0.
05
24
9

0.
15
26
2

0.
03
63
4

0.
15
83
5

Io
no
sp
he
re

0.
18
81
3

0.
02
95
9

0.
18
02
7

0.
02
72
9

0.
19
41
2

0.
03
26
0

0.
18
20
4

0.
02
92
1

0.
19
03
0

K
rv
sk
pE

W
0.
05
96
6

0.
01
14
4

0.
05
87
4

0.
01
15
2

0.
10
13
5

0.
03
05
4

0.
06
13
3

0.
01
28
4

0.
09
97
7 (c
on
tin

ue
d)

156 R. A. Khurma et al.

Ta
bl
e
6

(c
on
tin

ue
d)

B
en
ch
m
ar
k

B
W
O
A

B
FF

A
B
B
A
T

B
C
S

A
vg
.e
rr
or

ra
te

fo
r
al
lw

ra
pp
er
s

A
vg
_e
rr
or

St
d_
er
ro
r

A
vg
_e
rr
or

St
d_
er
ro
r

A
vg
_e
rr
or

St
d_
er
ro
r

A
vg
_e
rr
or

St
d_
er
ro
r

L
eu
ke
m
ia

0.
61
70
6

0.
02
66
9

0.
62
50
0

0.
00
00
0

0.
61
85
0

0.
00
99
3

0.
62
20
0

0.
01
05
7

0.
61
75
1

liv
er

0.
30
25
9

0.
01
40
0

0.
30
80
5

0.
02
36
0

0.
32
36
7

0.
05
70
7

0.
30
08
7

0.
00
64
4

0.
31
96
4

Ly
m
ph
og
ra
ph
y

0.
41
18
5

0.
07
49
2

0.
40
02
6

0.
06
38
3

0.
36
44
1

0.
07
54
8

0.
38
45
0

0.
06
95
1

0.
38
96
3

M
-o
f-
n

0.
15
61
0

0.
03
60
4

0.
16
94
9

0.
02
72
8

0.
19
86
3

0.
04
80
3

0.
14
62
5

0.
03
75
6

0.
18
72
4

pa
rk
in
so
ns
2

0.
38
04
1

0.
02
96
8

0.
38
39
8

0.
02
30
8

0.
37
28
4

0.
02
18
3

0.
36
55
5

0.
03
13
5

0.
36
19
1

pe
ng
lu
ng

0.
40
01
9

0.
05
12
1

0.
39
38
1

0.
04
57
7

0.
39
83
1

0.
05
55
0

0.
40
18
1

0.
01
31
3

0.
40
63
7

se
m
ei
on

0.
06
23
7

0.
00
63
3

0.
06
11
2

0.
00
66
8

0.
06
53
4

0.
00
72
9

0.
06
25
1

0.
00
57
5

0.
06
46
3

So
na
rE
W

0.
48
27
8

0.
05
96
3

0.
47
40
0

0.
07
38
3

0.
47
04
3

0.
09
62
0

0.
48
27
6

0.
07
01
2

0.
48
02
9

Sp
ec
tE
W

0.
23
93
2

0.
02
91
0

0.
23
72
2

0.
02
42
3

0.
24
29
0

0.
03
00
5

0.
22
95
8

0.
01
61
4

0.
23
99
7

T
ic
-t
ac
-t
oc

0.
31
69
7

0.
01
79
7

0.
31
80
5

0.
02
45
2

0.
28
86
1

0.
03
32
4

0.
32
88
0

0.
01
38
7

0.
31
60
0

V
er
te
br
al

0.
11
78
7

0.
00
10
0

0.
11
80
6

0.
00
14
5

0.
13
05
1

0.
01
92
5

0.
11
81
7

0.
00
14
4

0.
12
37
2

V
ot
e

0.
09
18
0

0.
01
92
5

0.
08
86
2

0.
01
96
3

0.
08
86
4

0.
03
97
1

0.
08
95
2

0.
01
65
6

0.
09
79
9

W
av
ef
ro
m
E
W

0.
24
49
2

0.
01
19
5

0.
25
11
1

0.
01
42
5

0.
26
24
8

0.
02
27
4

0.
24
52
7

0.
01
12
8

0.
26
47
4

W
in
eE

W
0.
02
58
0

0.
02
67
8

0.
01
77
5

0.
02
77
6

0.
04
43
8

0.
04
29
6

0.
03
97
0

0.
03
67
2

0.
04
44
9

Z
oo

0.
18
63
6

0.
05
48
2

0.
19
55
0

0.
04
44
7

0.
19
82
3

0.
04
67
3

0.
19
78
2

0.
02
44
7

0.
21
45
5

or
lr
aw

s1
0P

0.
54
54
5

0.
00
00
0

0.
54
54
5

0.
00
00
0

0.
55
35
0

0.
03
45
3

0.
55
32
7

0.
03
47
5

0.
55
39
8

C
L
L
_S

U
B
_1
11

0.
75
59
2

0.
02
37
0

0.
75
66
9

0.
02
64
6

0.
72
88
5

0.
08
14
7

0.
62
61
2

0.
09
94
1

0.
70
75
8

G
L
IO

M
A

0.
16
66
7

0.
00
00
0

0.
16
66
7

0.
00
00
0

0.
17
71
7

0.
03
13
5

0.
17
53
3

0.
02
75
2

0.
17
52
6

lu
ng

_d
is
cr
et
e

0.
77
05
6

0.
05
88
0

0.
77
40
6

0.
07
57
0

0.
75
56
9

0.
05
55
9

0.
77
56
9

0.
03
57
1

0.
75
78
5

EvoloPy-FS: An Open-Source Nature-Inspired … 157

Ta
bl
e
7

W
ra
pp

er
re
su
lts

ba
se
d
on

nu
m
be
r
of

se
le
ct
ed

fe
at
ur
e
ev
al
ua
tio

n
m
et
ri
c

B
en
ch
m
ar
k

B
PS

O
B
M
V
O

B
M
FO

B
G
W
O

A
vg
.F

S
fo
r
al
l

w
ra
pp
er
s

A
vg
_F

S
St
d_
FS

A
vg
_F

S
St
d_
FS

A
vg
_F

S
St
d_
FS

A
vg
_F

S
St
d_
FS

B
re
as
tc
an
ce
r

4.
27
60
0

0.
20
44
9

4.
03
90
0

0.
80
67
7

3.
97
85
0

0.
22
17
7

4.
94
95
0

1.
09
95
0

4.
28
97
5

B
re
as
tE
W

12
.5
64
50

0.
71
54
4

9.
04
85
0

3.
17
60
0

14
.7
12
00

1.
67
43
5

16
.1
97
50

2.
58
54
0

14
.1
39
69

cl
ea
n1

59
.0
97
50

5.
19
14
3

44
.2
33
50

13
.2
73
80

81
.2
36
50

3.
59
09
9

83
.7
49
50

6.
67
18
8

74
.3
85
00

C
ol
on

81
9.
21
10
0

30
.3
89
89

64
1.
32
20
0

15
5.
65
76
9

99
9.
21
50
0

2.
69
67
4

99
4.
35
00
0

19
.6
55
65

74
0.
49
12
5

C
on
gr
es
sE
W

7.
29
95
0

0.
38
70
3

4.
02
70
0

2.
15
06
4

6.
61
35
0

0.
80
03
8

9.
34
70
0

1.
92
56
4

7.
20
61
9

di
ab
et
es

3.
78
25
0

0.
18
39
6

3.
83
50
0

0.
37
37
1

3.
98
95
0

0.
02
28
2

4.
34
95
0

1.
42
38
0

4.
08
78
1

E
xa
ct
ly

5.
90
00
0

0.
33
35
3

5.
47
25
0

1.
20
79
6

6.
77
70
0

0.
49
88
7

6.
94
95
0

2.
43
79
6

6.
58
14
4

E
xa
ct
ly
2

5.
90
95
0

0.
33
66
8

5.
74
95
0

1.
19
47
0

7.
07
95
0

0.
66
33
7

5.
44
80
0

2.
47
20
7

6.
16
61
3

H
ea
rt
E
W

5.
88
35
0

0.
25
74
2

6.
01
25
0

1.
01
53
4

6.
16
40
0

1.
08
72
3

7.
55
10
0

1.
38
92
7

9.
38
88
8

Io
no
sp
he
re

15
.1
07
50

0.
66
96
7

4.
05
00
0

0.
86
21
2

13
.0
46
00

1.
35
73
9

16
.3
99
50

2.
41
30
1

13
.0
01
63

K
rv
sk
pE

W
14
.6
35
50

0.
92
23
1

12
.2
36
00

5.
70
80
0

20
.0
47
50

1.
94
72
2

20
.0
45
00

2.
47
79
7

18
.6
82
06

L
eu
ke
m
ia

22
33
.5
27
50

18
3.
12
79
6

14
17
.3
85
00

35
8.
88
67
3

35
52
.0
89
00

26
.0
81
08

35
68
.8
50
00

47
.0
71
36

27
28
.1
58
19

liv
er

2.
88
00
0

0.
11
77
4

4.
05
85
0

0.
94
22
3

4.
34
55
0

0.
15
62
9

3.
15
05
0

1.
26
71
5

4.
00
23
1

Ly
m
ph
og
ra
ph
y

7.
87
05
0

0.
38
86
5

6.
66
50
0

1.
59
88
5

9.
26
50
0

1.
06
63
7

9.
24
60
0

2.
28
62
6

8.
75
15
0

M
-o
f-
n

5.
82
70
0

0.
33
90
4

7.
37
25
0

1.
08
61
4

7.
16
75
0

0.
51
63
2

7.
59
75
0

1.
38
98
5

7.
51
09
4

pa
rk
in
so
ns
2

10
.0
96
00

0.
42
17
2

4.
41
10
0

2.
64
57
9

8.
29
50
0

2.
26
02
7

11
.5
48
50

2.
21
07
9

9.
81
51
9

pe
ng
lu
ng

10
7.
15
70
0

3.
67
94
3

15
6.
68
45
0

17
.4
08
86

16
1.
69
70
0

1.
25
26
2

16
4.
11
82
0

3.
45
95
4

14
9.
28
72
1

se
m
ei
on

90
.4
83
00

3.
28
61
7

97
.7
74
50

28
.7
18
33

13
3.
49
70
0

3.
17
39
5

13
3.
49
15
0

8.
18
16
6

12
3.
94
37
5

So
na
rE
W

23
.7
98
00

1.
53
16
7

16
.8
73
50

5.
88
11
8

28
.3
08
00

2.
56
66
9

29
.6
94
00

3.
39
11
5

26
.7
98
00

Sp
ec
tE
W

9.
24
80
0

0.
53
39
4

7.
32
82
5

1.
42
32
7

9.
15
75
0

0.
99
69
7

10
.4
00
00

2.
47
87
6

9.
64
20
9

T
ic
-t
ac
-t
oc

4.
24
55
0

0.
23
86
9

4.
76
70
0

0.
65
97
5

5.
01
20
0

0.
09
36
2

5.
69
55
0

1.
17
44
7

5.
12
53
1 (c
on
tin

ue
d)

158 R. A. Khurma et al.
Ta

bl
e
7

(c
on
tin

ue
d)

B
en
ch
m
ar
k

B
PS

O
B
M
V
O

B
M
FO

B
G
W
O

A
vg
.F

S
fo
r
al
l

w
ra
pp
er
s

A
vg
_F

S
St
d_
FS

A
vg
_F

S
St
d_
FS

A
vg
_F

S
St
d_
FS

A
vg
_F

S
St
d_
FS

V
er
te
br
al

2.
98
83
1

0.
05
04
5

2.
36
95
0

0.
49
55
5

2.
47
35
0

0.
06
68
3

3.
10
40
0

0.
78
42
6

2.
73
71
0

V
ot
e

7.
29
20
0

0.
39
35
9

4.
67
95
0

1.
18
54
1

6.
25
55
0

0.
71
22
8

6.
80
00
0

1.
54
23
8

6.
55
99
4

W
av
ef
ro
m
E
W

16
.2
08
00

0.
71
39
3

17
.3
38
00

2.
84
48
5

21
.8
95
50

1.
83
07
7

22
.1
96
50

3.
20
55
0

21
.2
83
56

W
in
eE

W
5.
84
00
0

0.
22
65
8

5.
75
20
0

1.
66
37
6

6.
41
25
0

0.
38
13
5

6.
45
60
0

1.
35
11
3

6.
53
75
0

Z
oo

6.
96
55
0

0.
26
09
4

8.
36
55
0

1.
96
26
4

8.
76
55
0

0.
18
66
2

7.
85
00
0

1.
56
52
5

8.
41
50
6

or
lr
aw

s1
0P

30
85
.6
65
00

26
3.
86
61
9

91
0.
06
45
0

37
8.
19
98
1

51
60
.4
04
50

56
.7
97
16

51
63
.4
00
00

50
.7
00
77

36
98
.4
61
44

C
L
L
_S

U
B
_1
11

37
95
.0
80
00

40
7.
64
92
7

12
42
.0
92
00

55
5.
68
43
0

56
75
.0
95
50

24
.7
11
39

56
96
.7
00
00

47
.7
10
86

43
03
.4
27
00

G
L
IO

M
A

14
64
.2
58
00

16
8.
60
28
3

78
5.
90
85
0

25
2.
48
06
7

22
16
.9
83
00

15
.3
70
67

21
99
.4
50
00

33
.7
24
07

16
99
.6
50
63

lu
ng

_d
is
cr
et
e

11
3.
69
15
0

9.
14
68
9

69
.4
22
00

26
.5
90
10

16
0.
08
05
0

2.
53
04
9

16
7.
30
95
0

10
.0
06
37

14
1.
49
41
9

B
en
ch
m
ar
k

B
W
O
A

B
FF

A
B
B
A
T

B
C
S

A
vg
.F

S
fo
r
al
l

w
ra
pp
er
s

A
vg
_F

S
St
d_
FS

A
vg
_F

S
St
d_
FS

A
vg
_F

S
St
d_
FS

A
vg
_F

S
St
d_
FS

B
re
as
tc
an
ce
r

4.
25
00
0

0.
80
87
9

3.
91
75
0

0.
95
30
8

4.
81
00
0

1.
31
22
5

4.
09
75
0

0.
61
30
1

4.
28
97
5

B
re
as
tE
W

14
.9
27
50

2.
10
31
0

15
.5
31
50

2.
10
40
6

14
.9
70
00

3.
79
44
9

15
.1
66
00

1.
94
30
0

14
.1
39
69

cl
ea
n1

81
.6
17
50

4.
01
54
6

81
.9
66
50

4.
33
51
4

81
.0
00
00

16
.9
97
67

82
.1
79
00

4.
41
30
0

74
.3
85
00

C
ol
on

99
8.
05
45
0

22
.0
52
58

10
03
.4
44
50

22
.8
88
38

42
7.
78
20
0

40
4.
34
71
8

40
.5
51
00

34
.2
83
39

74
0.
49
12
5

C
on
gr
es
sE
W

6.
67
00
0

1.
36
81
6

8.
07
10
0

1.
76
30
4

8.
57
15
0

2.
35
54
5

7.
05
00
0

0.
91
79
6

7.
20
61
9

di
ab
et
es

4.
00
40
0

0.
20
34
0

3.
81
50
0

0.
30
62
4

4.
99
40
0

0.
93
22
5

3.
93
30
0

0.
19
99
2

4.
08
78
1

E
xa
ct
ly

6.
87
15
0

0.
88
94
5

6.
90
45
0

1.
09
64
0

6.
34
85
0

3.
22
70
1

7.
42
80
0

0.
91
31
1

6.
58
14
4

E
xa
ct
ly
2

6.
80
00
0

1.
10
28
1

6.
97
40
0

0.
82
86
5

4.
56
40
0

2.
87
58
5

6.
80
45
0

0.
81
45
6

6.
16
61
3

H
ea
rt
E
W

7.
54
95
0

1.
27
53
7

7.
19
25
0

1.
22
08
9

27
.8
49
07

95
.8
22
13

6.
90
90
0

0.
95
13
8

9.
38
88
8

Io
no
sp
he
re

14
.3
24
50

2.
11
42
9

15
.4
04
50

2.
53
68
7

11
.5
27
00

6.
87
93
1

14
.1
54
00

0.
13
81
7

13
.0
01
63

K
rv
sk
pE

W
20
.3
11
50

1.
90
55
7

20
.0
84
00

1.
93
01
3

22
.7
39
00

4.
25
94
5

19
.3
58
00

1.
36
36
7

18
.6
82
06 (c
on
tin

ue
d)

EvoloPy-FS: An Open-Source Nature-Inspired … 159

Ta
bl
e
7

(c
on
tin

ue
d)

B
en
ch
m
ar
k

B
W
O
A

B
FF

A
B
B
A
T

B
C
S

A
vg
.F

S
fo
r
al
l

w
ra
pp
er
s

A
vg
_F

S
St
d_
FS

A
vg
_F

S
St
d_
FS

A
vg
_F

S
St
d_
FS

A
vg
_F

S
St
d_
FS

L
eu
ke
m
ia

34
20
.5
48
00

68
1.
97
57
0

35
67
.8
50
00

46
.6
24
23

32
54
.3
36
50

80
2.
76
96
4

81
0.
67
95
0

79
8.
25
48
3

27
28
.1
58
19

liv
er

4.
57
55
0

0.
80
51
4

4.
51
10
0

0.
81
13
9

4.
19
30
0

0.
94
85
2

4.
30
45
0

0.
47
98
2

4.
00
23
1

Ly
m
ph
og
ra
ph
y

8.
93
30
0

2.
21
58
5

9.
29
95
0

1.
21
55
1

10
.1
81
00

3.
60
48
3

8.
55
20
0

1.
20
72
9

8.
75
15
0

M
-o
f-
n

7.
99
70
0

0.
81
78
3

8.
09
15
0

0.
82
34
2

8.
30
55
0

1.
41
58
0

7.
72
90
0

0.
73
70
6

7.
51
09
4

pa
rk
in
so
ns
2

10
.9
79
50

2.
67
34
2

11
.3
44
50

2.
31
41
9

11
.7
03
50

3.
44
53
5

10
.1
43
50

1.
65
06
9

9.
81
51
9

pe
ng
lu
ng

16
4.
40
50
0

8.
55
27
1

15
9.
40
90
0

8.
75
64
6

11
9.
97
15
0

49
.2
00
93

16
0.
85
55
0

3.
45
66
4

14
9.
28
72
1

se
m
ei
on

13
2.
73
30
0

5.
71
40
9

13
2.
85
70
0

6.
71
27
0

13
7.
09
50
0

23
.8
86
30

13
3.
61
90
0

7.
51
77
1

12
3.
94
37
5

So
na
rE
W

29
.5
04
50

2.
63
92
7

29
.2
30
00

4.
19
63
4

28
.0
43
50

9.
87
92
7

28
.9
32
50

2.
78
92
1

26
.7
98
00

Sp
ec
tE
W

9.
72
05
0

1.
69
35
3

9.
64
55
0

1.
32
03
2

11
.9
28
50

3.
04
65
6

9.
70
85
0

1.
00
24
8

9.
64
20
9

T
ic
-t
ac
-t
oc

4.
99
15
0

0.
42
68
2

5.
01
75
0

0.
44
16
3

6.
28
60
0

1.
13
16
6

4.
98
75
0

0.
29
25
0

5.
12
53
1

V
er
te
br
al

2.
48
30
0

0.
50
41
1

2.
45
30
0

0.
48
75
6

3.
40
30
0

0.
99
41
4

2.
62
25
0

0.
32
24
4

2.
73
71
0

V
ot
e

6.
55
55
0

1.
28
60
5

6.
62
10
0

1.
99
01
5

7.
86
20
0

2.
02
95
2

6.
41
40
0

1.
10
43
9

6.
55
99
4

W
av
ef
ro
m
E
W

22
.2
47
50

1.
48
03
1

22
.9
53
00

2.
05
06
5

25
.1
22
50

5.
08
22
3

22
.3
07
50

2.
27
61
6

21
.2
83
56

W
in
eE

W
6.
84
25
0

1.
12
26
0

7.
03
25
0

1.
50
57
5

7.
43
80
0

2.
07
05
5

6.
52
65
0

0.
91
61
4

6.
53
75
0

Z
oo

8.
84
65
0

1.
80
79
4

8.
34
85
0

2.
00
51
4

9.
68
60
0

2.
53
14
0

8.
49
30
0

0.
11
11
5

8.
41
50
6

or
lr
aw

s1
0P

49
50
.1
46
00

89
1.
17
26
9

51
63
.8
50
00

50
.0
71
82

20
63
.8
58
50

11
69
.9
89
79

30
90
.3
03
00

11
45
.1
41
16

36
98
.4
61
44

C
L
L
_S

U
B
_1
11

56
80
.9
19
00

43
.5
76
53

56
76
.6
61
50

46
.0
81
12

42
19
.1
34
00

22
73
.3
46
42

24
41
.7
34
00

18
13
.2
39
69

43
03
.4
27
00

G
L
IO

M
A

22
08
.8
16
00

32
.6
01
56

22
20
.4
02
00

32
.9
68
88

76
7.
02
55
0

73
0.
56
99
9

17
34
.3
62
00

42
4.
06
18
9

16
99
.6
50
63

lu
ng

_d
is
cr
et
e

16
1.
93
25
0

7.
99
46
8

15
5.
80
75
0

6.
27
09
6

14
2.
81
50
0

56
.1
79
89

16
0.
89
50
0

7.
44
85
0

14
1.
49
41
9

160 R. A. Khurma et al.

Ta
bl
e
8

W
ra
pp
er

re
su
lts

ba
se
d
on

ru
nn
in
g
tim

e
ev
al
ua
tio

n
m
et
ri
c
(s
ec
on
ds

pe
r
ru
n)

B
en
ch
m
ar
k

B
PS

O
B
M
V
O

B
M
FO

B
G
W
O

A
vg
.r
un
ni
ng

tim
e

fo
r
al
lw

ra
pp
er
s

A
vg
_t
im

e
St
d_

tim
e

A
vg
_t
im

e
St
d_

tim
e

A
vg
_t
im

e
St
d_

tim
e

A
vg
_t
im

e
St
d_

tim
e

B
re
as
tc
an
ce
r

7.
13
38
0

0.
15
47
0

10
.2
82
70

0.
12
36
4

31
.4
76
00

0.
35
44
9

7.
93
09
5

0.
09
89
2

12
.2
55
22

B
re
as
tE
W

9.
27
40
0

0.
12
66
8

11
.6
27
95

0.
27
92
0

43
.0
14
25

0.
36
19
1

12
.2
35
10

0.
17
41
7

15
.9
08
85

cl
ea
n1

21
.0
89
60

0.
80
29
6

19
.0
36
00

0.
71
30
3

10
5.
98
43
0

0.
83
34
6

36
.7
91
60

0.
43
04
5

36
.0
89
78

C
ol
on

13
4.
80
09
5

0.
61
39
8

80
.2
49
20

0.
90
30
8

40
8.
78
09
0

3.
74
12
8

24
3.
61
73
0

13
.5
58
00

13
1.
95
82
0

C
on
gr
es
sE
W

6.
69
75
5

0.
12
63
2

9.
27
86
5

0.
15
08
5

28
.5
20
65

0.
29
96
5

7.
98
68
0

0.
14
31
4

11
.4
26
31

di
ab
et
es

7.
07
68
5

0.
09
76
2

10
.3
49
10

0.
10
47
9

30
.8
28
00

0.
21
79
5

7.
77
57
0

0.
10
51
5

12
.3
61
88

E
xa
ct
ly

10
.1
65
10

0.
12
79
6

13
.3
54
80

0.
42
68
6

48
.1
77
75

0.
42
17
2

12
.1
21
35

0.
47
12
0

17
.8
22
54

E
xa
ct
ly
2

10
.3
70
20

0.
46
62
1

13
.4
81
20

0.
30
71
6

48
.4
83
10

0.
45
56
7

11
.9
97
55

0.
39
65
7

17
.7
59
14

H
ea
rt
E
W

5.
76
02
5

0.
07
16
7

8.
34
18
0

0.
08
13
4

23
.5
89
60

0.
24
41
5

6.
60
07
0

0.
08
33
9

9.
80
26
6

Io
no
sp
he
re

8.
09
34
0

0.
09
42
3

10
.1
36
55

0.
09
36
0

34
.0
53
60

0.
29
21
6

10
.7
23
70

0.
17
62
5

13
.0
65
45

K
rv
sk
pE

W
95
.4
38
55

16
.6
90
85

83
.7
81
25

10
.2
18
09

53
1.
49
18
0

3.
92
48
9

11
7.
93
47
0

6.
16
39
3

18
1.
60
09
3

L
eu
ke
m
ia

46
8.
72
44
1

7.
07
62
2

26
9.
41
85
0

5.
74
70
7

14
48
.7
66
90

22
.3
70
34

74
5.
86
34
5

21
.2
58
38

44
8.
97
02
6

liv
er

5.
55
02
0

0.
05
80
7

8.
70
11
0

0.
12
99
2

23
.4
53
35

0.
15
25
2

5.
94
48
0

0.
07
41
1

9.
91
33
8

Ly
m
ph
og
ra
ph
y

6.
48
79
5

3.
48
70
6

8.
27
49
0

0.
05
17
3

23
.3
15
45

0.
25
97
7

6.
92
74
0

0.
12
72
0

9.
80
13
5

M
-o
f-
n

10
.3
48
65

0.
60
67
7

13
.4
02
75

0.
30
01
9

46
.4
18
60

0.
39
57
2

11
.4
17
60

0.
34
52
3

17
.6
14
91

pa
rk
in
so
ns
2

6.
38
71
5

0.
08
03
2

8.
86
54
0

0.
14
46
3

25
.6
30
25

0.
14
65
4

7.
75
74
0

0.
08
58
7

10
.6
73
10

pe
ng
lu
ng

26
.0
19
90

0.
20
29
5

20
.2
02
80

0.
39
51
6

84
.3
63
95

0.
82
77
3

46
.2
53
70

5.
98
60
4

29
.3
98
92

se
m
ei
on

11
2.
19
66
5

19
.8
81
40

11
6.
87
50
0

24
.7
61
54

12
53
.9
90
40

5.
67
61
1

28
0.
35
37
0

11
.5
57
43

39
1.
39
30
9

So
na
rE
W

9.
06
25
0

0.
07
24
0

10
.2
85
45

0.
11
83
2

34
.8
65
15

0.
49
67
2

13
.1
86
95

0.
10
77
5

13
.4
82
01

Sp
ec
tE
W

6.
48
79
5

0.
04
81
1

8.
95
95
0

0.
08
77
7

26
.2
33
85

0.
22
26
6

7.
97
92
0

0.
07
86
3

10
.7
38
42

T
ic
-t
ac
-t
oc

8.
32
03
0

0.
10
92
3

12
.0
59
05

0.
26
31
4

38
.7
20
00

0.
32
50
5

9.
70
45
0

0.
35
62
6

15
.1
38
44

(c
on
tin

ue
d)

EvoloPy-FS: An Open-Source Nature-Inspired … 161
Ta

bl
e
8

(c
on
tin

ue
d)

B
en
ch
m
ar
k

B
PS

O
B
M
V
O

B
M
FO

B
G
W
O

A
vg
.r
un
ni
ng

tim
e

fo
r
al
lw

ra
pp
er
s

A
vg
_t
im

e
St
d_

tim
e

A
vg
_t
im

e
St
d_

tim
e

A
vg
_t
im

e
St
d_

tim
e

A
vg
_t
im

e
St
d_

tim
e

V
er
te
br
al

5.
87
27
0

0.
06
05
3

9.
19
77
0

0.
10
49
5

24
.9
85
35

0.
18
75
0

6.
25
37
5

0.
08
95
2

10
.5
04
14

V
ot
e

6.
04
39
5

0.
08
37
6

8.
80
31
0

0.
17
00
3

25
.3
82
75

0.
33
81
8

7.
31
60
0

0.
09
53
9

10
.5
55
43

W
av
ef
ro
m
E
W

21
3.
91
19
5

18
.5
44
86

21
4.
55
12
0

23
.0
28
20

17
27
.0
23
00

39
.3
81
53

37
4.
79
18
0

18
.1
91
21

58
5.
70
90
9

W
in
eE

W
5.
39
33
5

0.
05
32
8

8.
22
02
5

0.
08
19
7

22
.4
93
95

0.
23
88
1

6.
41
65
0

0.
07
88
4

9.
47
09
6

Z
oo

5.
62
13
0

0.
12
03
7

8.
48
07
5

0.
11
35
6

22
.9
83
15

0.
22
77
7

6.
72
87
5

0.
08
61
3

9.
66
26
6

or
lr
aw

s1
0P

69
8.
99
86
5

5.
30
71
4

38
7.
53
76
0

22
.2
02
56

21
39
.2
57
69

30
.5
81
37

13
01
.4
01
03

33
3.
40
66
8

69
3.
22
41
0

C
L
L
_S

U
B
_1
11

71
0.
66
88
5

18
.4
36
30

40
7.
30
21
0

8.
30
08
2

23
63
.5
90
05

14
.5
24
44

13
99
.5
19
79

16
.7
55
18

76
0.
77
61
0

G
L
IO

M
A

28
3.
63
85
5

4.
58
02
5

15
1.
22
51
0

2.
52
30
8

80
7.
22
16
1

8.
22
92
4

48
2.
23
02
5

22
.0
06
05

26
1.
01
43
8

lu
ng

_d
is
cr
et
e

25
.5
77
80

0.
17
16
1

20
.0
77
05

0.
25
14
8

82
.3
44
60

0.
41
53
3

43
.1
57
85

0.
89
54
6

28
.9
34
98

B
en
ch
m
ar
k

B
W
O
A

B
FF

A
B
B
A
T

B
C
S

A
vg
.r
un
ni
ng

tim
e

fo
r
al
lw

ra
pp
er
s

A
vg
_t
im

e
St
d_

tim
e

A
vg
_t
im

e
St
d_

tim
e

A
vg
_t
im

e
St
d_

tim
e

A
vg
_t
im

e
St
d_

tim
e

B
re
as
tc
an
ce
r

14
.8
94
70

0.
26
04
8

7.
13
45
5

0.
17
18
2

7.
15
92
5

0.
28
65
2

12
.0
29
80

0.
12
00
6

12
.2
55
22

B
re
as
tE
W

18
.2
60
50

0.
41
76
1

8.
94
70
5

0.
15
85
6

8.
65
59
0

0.
64
39
2

15
.2
56
05

0.
13
06
3

15
.9
08
85

cl
ea
n1

38
.4
00
80

1.
90
92
2

16
.7
82
45

0.
24
82
3

18
.1
33
70

2.
45
82
6

32
.4
99
80

0.
41
11
5

36
.0
89
78

C
ol
on

12
9.
57
41
4

3.
88
42
7

13
.9
23
00

0.
20
93
2

14
.7
82
65

1.
99
48
8

29
.9
37
45

0.
36
06
2

13
1.
95
82
0

C
on
gr
es
sE
W

15
.1
14
25

0.
26
83
2

6.
55
37
0

0.
14
64
0

6.
47
10
0

0.
26
91
7

10
.7
87
85

0.
10
61
9

11
.4
26
31

di
ab
et
es

15
.9
28
25

0.
21
28
5

7.
23
75
0

0.
10
01
1

7.
43
52
5

0.
23
43
5

12
.2
64
40

0.
13
90
4

12
.3
61
88

E
xa
ct
ly

20
.4
84
65

0.
30
55
4

10
.3
06
55

0.
12
57
0

10
.3
06
75

1.
66
54
2

17
.6
63
40

0.
14
97
3

17
.8
22
54

E
xa
ct
ly
2

20
.4
35
45

0.
35
20
3

10
.2
94
35

0.
16
70
9

9.
22
43
5

1.
49
05
9

17
.7
86
90

0.
15
13
0

17
.7
59
14

H
ea
rt
E
W

13
.5
89
60

0.
15
01
2

5.
85
80
5

0.
23
39
6

5.
52
36
0

0.
09
27
4

9.
15
77
0

0.
17
71
6

9.
80
26
6

Io
no
sp
he
re

16
.4
58
85

0.
22
67
3

6.
99
06
5

0.
19
69
6

6.
44
80
0

0.
53
22
0

11
.6
18
85

0.
13
81
7

13
.0
65
45

K
rv
sk
pE

W
17
4.
29
65
5

5.
39
53
1

11
0.
73
63
0

5.
82
11
5

13
4.
61
06
0

19
.1
50
36

20
4.
51
76
5

8.
98
36
7

18
1.
60
09
3 (c

on
tin

ue
d)

162 R. A. Khurma et al.

Ta
bl
e
8

(c
on
tin

ue
d)

B
en
ch
m
ar
k

B
W
O
A

B
FF

A
B
B
A
T

B
C
S

A
vg
.r
un
ni
ng

tim
e

fo
r
al
lw

ra
pp
er
s

A
vg
_t
im

e
St
d_

tim
e

A
vg
_t
im

e
St
d_

tim
e

A
vg
_t
im

e
St
d_

tim
e

A
vg
_t
im

e
St
d_

tim
e

L
eu
ke
m
ia

44
8.
26
62
0

5.
37
36
5

49
.8
15
75

9.
50
21
3

55
.9
37
34

5.
57
14
5

10
4.
96
95
1

1.
61
85
9

44
8.
97
02
6

liv
er

13
.9
15
80

0.
20
83
9

5.
86
07
5

0.
08
86
3

5.
92
37
5

0.
11
52
9

9.
95
73
0

0.
21
70
7

9.
91
33
8

Ly
m
ph
og
ra
ph
y

13
.3
67
85

0.
19
34
4

5.
54
51
5

0.
13
04
8

5.
42
35
5

0.
12
72
5

9.
06
85
5

0.
12
21
7

9.
80
13
5

M
-o
f-
n

20
.3
96
85

0.
96
51
5

10
.1
57
00

0.
12
30
9

11
.2
06
80

1.
22
54
3

17
.5
71
00

0.
26
21
3

17
.6
14
91

pa
rk
in
so
ns
2

15
.4
51
60

4.
22
95
8

5.
70
39
0

0.
17
67
8

5.
89
47
5

0.
08
94
2

9.
69
43
5

0.
09
97
5

10
.6
73
10

pe
ng
lu
ng

31
.0
28
40

0.
17
07
2

6.
88
88
0

0.
14
85
9

7.
41
52
5

0.
29
72
4

13
.0
18
55

0.
14
37
2

29
.3
98
92

se
m
ei
on

33
5.
16
91
1

17
.1
64
40

24
1.
83
80
0

11
.1
78
02

28
2.
62
62
8

52
.7
08
82

50
8.
09
56
1

24
.7
01
20

39
1.
39
30
9

So
na
rE
W

16
.9
19
45

0.
21
05
5

6.
47
70
5

0.
08
86
0

6.
35
84
0

0.
28
09
3

10
.7
01
10

0.
24
56
8

13
.4
82
01

Sp
ec
tE
W

14
.3
72
15

0.
25
10
6

6.
02
74
5

0.
11
76
4

5.
92
04
0

0.
13
91
9

9.
92
68
5

0.
16
23
1

10
.7
38
42

T
ic
-t
ac
-t
oc

18
.1
36
25

0.
22
67
4

8.
83
32
5

0.
12
52
2

10
.0
45
35

0.
82
02
0

15
.2
88
80

0.
22
88
7

15
.1
38
44

V
er
te
br
al

14
.4
94
50

0.
17
84
9

6.
15
05
0

0.
09
25
4

6.
36
93
5

0.
12
31
0

10
.7
09
25

0.
12
55
7

10
.5
04
14

V
ot
e

14
.1
64
85

0.
14
22
0

7.
00
88
5

4.
32
49
1

5.
85
84
5

0.
16
54
3

9.
86
54
5

0.
18
56
8

10
.5
55
43

W
av
ef
ro
m
E
W

52
4.
57
38
5

20
.9
81
63

35
5.
35
80
0

7.
61
04
2

53
0.
33
17
7

16
6.
99
77
2

74
5.
13
11
3

8.
07
35
3

58
5.
70
90
9

W
in
eE

W
13
.2
16
00

0.
14
10
7

5.
45
05
0

3.
35
14
3

5.
51
11
5

0.
14
68
9

9.
06
59
5

0.
11
22
5

9.
47
09
6

Z
oo

13
.6
67
35

0.
14
73
5

5.
30
09
0

0.
08
70
4

5.
51
10
0

0.
07
34
0

9.
00
81
0

0.
11
11
5

9.
66
26
6

or
lr
aw

s1
0P

68
5.
27
16
0

12
.6
82
53

89
.8
27
15

2.
08
51
6

73
.5
36
70

13
.2
83
79

16
9.
96
24
0

2.
04
08
0

69
3.
22
41
0

C
L
L
_S

U
B
_1
11

74
9.
18
05
5

4.
75
01
4

12
2.
02
44
0

8.
24
41
3

12
2.
51
59
5

35
.1
93
64

21
1.
40
71
0

2.
68
36
1

76
0.
77
61
0

G
L
IO

M
A

25
4.
36
20
5

1.
19
39
3

28
.9
00
70

6.
09
77
3

26
.0
16
05

6.
23
97
5

54
.5
20
70

10
.0
22
17

26
1.
01
43
8

lu
ng

_d
is
cr
et
e

32
.6
54
20

0.
18
93
0

7.
20
61
0

0.
25
92
4

7.
62
42
5

0.
41
57
3

12
.8
38
00

0.
12
45
8

28
.9
34
98

EvoloPy-FS: An Open-Source Nature-Inspired … 163

Ta
bl
e
9

H
yb

ri
d
ch
i-
sq
ua
re

W
ra
pp

er
re
su
lts

ba
se
d
on

er
ro
r
ra
te
ev
al
ua
tio

n
m
et
ri
c

B
en
ch
m
ar
k

C
hi
-s
qu
ar
e
B
PS

O
C
hi
-s
qu
ar
e
B
M
V
O

C
hi
-s
qu
ar
e
B
M
FO

C
hi
-s
qu
ar
e
B
G
W
O

A
vg
.e
rr
or

ra
te

A
vg
_e
rr
or

St
d_
er
ro
r

A
vg
_e
rr
or

St
d_
er
ro
r

A
vg
_e
rr
or

St
d_
er
ro
r

A
vg
_e
rr
or

St
d_
er
ro
r

B
re
as
tc
an
ce
r(
F
SR

=
25
%
)

0.
08
24
2

0.
00
17
4

0.
05
19
5

0.
00
00
0

0.
05
19
5

0.
00
00
0

0.
05
19
7

0.
00
01
2

0.
05
66
0

B
re
as
tc
an
ce
r(
F
SR

=
35
%
)

0.
07
10
6

0.
00
23
1

0.
04
74
2

0.
00
63
7

0.
04
53
4

0.
00
08
0

0.
04
61
2

0.
00
66
1

0.
04
96
4

B
re
as
tc
an
ce
r(
F
SR

=
75
%
)

0.
05
77
0

0.
00
33
1

0.
03
98
8

0.
00
29
5

0.
03
89
7

0.
00
00
0

0.
03
76
6

0.
00
82
9

0.
04
16
7

pe
ng
lu
ng
(F
SR

=
25
%
)

0.
47
64
4

0.
00
88
8

0.
45
60
6

0.
08
61
4

0.
45
91
3

0.
00
94
2

0.
45
62
5

0.
06
11
7

0.
46
12
6

pe
ng
lu
ng
(F
SR

=
35
%
)

0.
47
29
4

0.
01
57
4

0.
43
61
3

0.
07
24
4

0.
44
70
6

0.
00
78
9

0.
43
12
5

0.
07
56
0

0.
44
97
8

pe
ng
lu
ng
(F
SR

=
75
%
)

0.
45
85
6

0.
00
74
0

0.
40
09
4

0.
06
15
0

0.
41
25
0

0.
00
60
5

0.
41
87
5

0.
06
11
7

0.
41
77
6

W
av
ef
ro
m
E
W
(F
SR

=
25
%
)

0.
34
90
1

0.
00
98
8

0.
26
46
0

0.
00
83
9

0.
25
26
9

0.
00
58
8

0.
26
67
4

0.
01
70
7

0.
27
53
4

W
av
ef
ro
m
E
W
(F
SR

=
35
%
)

0.
30
34
2

0.
00
81
2

0.
22
78
8

0.
00
94
0

0.
21
31
4

0.
00
88
1

0.
22
46
3

0.
02
08
9

0.
23
13
6

W
av
ef
ro
m
E
W
(F
SR

=
75
%
)

0.
33
62
9

0.
00
97
8

0.
25
33
1

0.
01
42
8

0.
22
96
3

0.
01
17
2

0.
25
65
0

0.
02
05
1

0.
25
40
6

K
rv
sk
pE

W
(F
SR

=
25
%
)

0.
27
28
0

0.
00
94
1

0.
06
27
8

0.
01
62
4

0.
06
47
7

0.
00
39
1

0.
12
28
2

0.
06
97
7

0.
09
73
7

K
rv
sk
pE

W
(F
SR

=
35
%
)

0.
27
68
2

0.
01
35
3

0.
05
67
5

0.
01
15
2

0.
04
65
8

0.
00
08
7

0.
11
68
1

0.
06
40
2

0.
09
54
6

K
rv
sk
pE

W
(F
SR

=
75
%
)

0.
27
15
8

0.
01
44
4

0.
07
80
4

0.
03
21
1

0.
05
84
6

0.
01
08
4

0.
13
05
1

0.
05
56
9

0.
10
45
4

or
lr
aw

s1
0P

(F
SR

=
25
%
)

0.
54
10
9

0.
01
43
3

0.
52
38
6

0.
06
76
2

0.
50
80
5

0.
02
42
5

0.
50
90
9

0.
04
56
9

0.
51
35
1

or
lr
aw

s1
0P

(F
SR

=
35
%
)

0.
51
67
3

0.
01
41
7

0.
51
16
8

0.
04
88
8

0.
45
90
9

0.
02
03
3

0.
45
90
9

0.
00
00
0

0.
47
43
1

or
lr
aw

s1
0P

(F
SR

=
75
%
)

0.
57
66
8

0.
01
07
9

0.
53
74
1

0.
04
00
9

0.
54
53
2

0.
00
06
1

0.
54
54
5

0.
00
00
0

0.
54
72
5

C
L
L
_S

U
B
_1
11
(F
SR

=
25
%
)

0.
66
84
2

0.
01
97
8

0.
57
60
0

0.
09
86
1

0.
75
45
8

0.
01
66
4

0.
71
92
3

0.
05
73
2

0.
69
14
6

C
L
L
_S

U
B
_1
11
(F
SR

=
35
%
)

0.
66
73
5

0.
01
75
1

0.
58
85
8

0.
08
50
7

0.
75
66
2

0.
01
32
7

0.
74
23
1

0.
04
51
6

0.
69
08
4

C
L
L
_S

U
B
_1
11
(F
SR

=
75
%
)

0.
66
30
8

0.
02
23
0

0.
60
36
2

0.
07
93
8

0.
76
43
5

0.
01
04
4

0.
73
46
2

0.
04
65
2

0.
69
44
0

164 R. A. Khurma et al.

Ta
bl
e
9

(c
on
tin

ue
d)

B
en
ch
m
ar
k

C
hi
-s
qu

ar
e
B
W
O
A

C
hi
-s
qu
ar
e
B
FF

A
C
hi
-s
qu

ar
e
B
B
A
T

C
hi
-s
qu

ar
e
B
C
S

A
vg
.e
rr
or

ra
te

A
vg
_e
rr
or

St
d_
er
ro
r

A
vg
_e
rr
or

St
d_
er
ro
r

A
vg
_e
rr
or

St
d_
er
ro
r

A
vg
_e
rr
or

St
d_
er
ro
r

B
re
as
tc
an
ce
r(
F
SR

=
25
%
)

0.
05
19
5

0.
00
00
0

0.
05
19
5

0.
00
00
0

0.
05
87
0

0.
00
11
7

0.
05
19
5

0.
00
00
0

0.
05
66
0

B
re
as
tc
an
ce
r(
F
SR

=
35
%
)

0.
04
81
0

0.
00
61
4

0.
04
28
6

0.
00
61
1

0.
05
05
6

0.
00
53
1

0.
04
56
4

0.
00
11
3

0.
04
96
4

B
re
as
tc
an
ce
r(
F
SR

=
75
%
)

0.
03
91
2

0.
00
07
3

0.
03
81
4

0.
00
50
3

0.
04
27
6

0.
00
91
2

0.
03
91
2

0.
00
03
6

0.
04
16
7

pe
ng
lu
ng
(F
SR

=
25
%
)

0.
45
60
0

0.
07
28
0

0.
46
25
6

0.
05
84
0

0.
46
82
5

0.
04
66
4

0.
45
53
8

0.
02
03
2

0.
46
12
6

pe
ng
lu
ng
(F
SR

=
35
%
)

0.
45
00
0

0.
06
28
3

0.
43
75
0

0.
09
51
1

0.
46
87
5

0.
05
89
3

0.
45
46
3

0.
01
15
7

0.
44
97
8

pe
ng
lu
ng
(F
SR

=
75
%
)

0.
41
23
1

0.
05
83
4

0.
40
63
1

0.
05
55
0

0.
42
73
1

0.
05
37
9

0.
40
53
8

0.
01
28
1

0.
41
77
6

W
av
ef
ro
m
E
W
(F
SR

=
25
%
)

0.
26
60
9

0.
01
20
1

0.
26
52
7

0.
01
61
3

0.
27
31
6

0.
01
27
6

0.
26
51
5

0.
01
56
0

0.
27
53
4

W
av
ef
ro
m
E
W
(F
SR

=
35
%
)

0.
21
70
4

0.
01
31
9

0.
22
08
5

0.
00
86
2

0.
23
04
6

0.
01
86
5

0.
21
34
7

0.
01
62
3

0.
23
13
6

W
av
ef
ro
m
E
W
(F
SR

=
75
%
)

0.
22
99
6

0.
01
47
8

0.
23
53
2

0.
01
16
4

0.
25
57
5

0.
01
92
6

0.
23
57
6

0.
00
95
3

0.
25
40
6

K
rv
sk
pE

W
(F
SR

=
25
%
)

0.
05
22
5

0.
00
46
8

0.
05
11
5

0.
00
43
2

0.
10
28
6

0.
02
10
5

0.
04
95
1

0.
00
40
1

0.
09
73
7

K
rv
sk
pE

W
(F
SR

=
35
%
)

0.
05
97
2

0.
00
56
4

0.
05
84
3

0.
00
65
8

0.
09
00
3

0.
03
93
7

0.
05
85
3

0.
00
63
9

0.
09
54
6

K
rv
sk
pE

W
(F
SR

=
75
%
)

0.
06
66
5

0.
00
88
9

0.
06
63
8

0.
01
13
3

0.
10
17
1

0.
02
82
5

0.
06
30
0

0.
01
10
0

0.
10
45
4

or
lr
aw

s1
0P

(F
SR

=
25
%
)

0.
49
95
0

0.
04
23
4

0.
51
69
5

0.
03
96
0

0.
49
36
8

0.
04
57
7

0.
51
58
6

0.
02
63
9

0.
51
35
1

or
lr
aw

s1
0P

(F
SR

=
35
%
)

0.
45
53
6

0.
00
26
7

0.
45
45
5

0.
00
00
0

0.
48
10
5

0.
04
03
3

0.
45
69
1

0.
00
68
0

0.
47
43
1

or
lr
aw

s1
0P

(F
SR

=
75
%
)

0.
54
54
5

0.
00
00
0

0.
54
54
5

0.
00
00
0

0.
53
54
1

0.
03
66
1

0.
54
68
2

0.
00
61
0

0.
54
72
5

C
L
L
_S

U
B
_1
11
(F
SR

=
25
%
)

0.
75
43
5

0.
03
68
7

0.
73
33
1

0.
07
55
8

0.
69
83
1

0.
07
13
6

0.
62
75
0

0.
12
36
5

0.
69
14
6

C
L
L
_S

U
B
_1
11
(F
SR

=
35
%
)

0.
73
61
2

0.
04
92
2

0.
74
13
1

0.
04
33
8

0.
71
16
9

0.
07
74
3

0.
58
27
7

0.
18
52
3

0.
69
08
4

C
L
L
_S

U
B
_1
11
(F
SR

=
75
%
)

0.
75
66
5

0.
02
30
0

0.
73
87
7

0.
05
67
2

0.
67
25
4

0.
10
69
2

0.
62
16
2

0.
11
83
1

0.
69
44
0

EvoloPy-FS: An Open-Source Nature-Inspired … 165

Ta
bl
e
10

H
yb

ri
d
C
hi
-s
qu

ar
e
W
ra
pp

er
re
su
lts

ba
se
d
on

th
e
nu

m
be
r
of

se
le
ct
ed

fe
at
ur
e
m
et
ri
cs

B
en
ch
m
ar
k

C
hi
-s
qu
ar
e
B
PS

O
C
hi
-s
qu
ar
e
B
M
V
O

C
hi
-s
qu
ar
e
B
M
FO

C
hi
-s
qu
ar
e
B
G
W
O

W
ra
pp
er
s

A
vg
.F

S

A
vg
_F

S
St
d_
FS

A
vg
_F

S
St
d_
FS

A
vg
_F

S
St
d_
FS

A
vg
_F

S
St
d_
FS

B
re
as
tc
an
ce
r(
F
SR

=
25
%
)

1.
32
95
0

0.
03
30
0

2.
00
00
0

0.
00
00
0

2.
00
00
0

0.
00
00
0

1.
99
95
0

0.
00
22
4

1.
89
75
6

B
re
as
tc
an
ce
r(
F
SR

=
35
%
)

1.
69
50
0

0.
06
42
8

2.
35
00
0

0.
48
93
6

2.
50
85
0

0.
06
18
4

2.
44
95
0

0.
50
98
6

2.
34
94
4

B
re
as
tc
an
ce
r(
F
SR

=
75
%
)

3.
33
90
0

0.
17
44
4

4.
26
65
0

0.
51
29
0

4.
45
00
0

0.
08
28
5

4.
25
30
0

0.
96
13
9

4.
25
24
4

pe
ng
lu
ng
(F
SR

=
25
%
)

30
.2
55
00

1.
51
76
5

30
.4
00
50

11
.5
30
53

40
.7
84
00

1.
21
83
3

41
.4
50
00

5.
25
63
2

37
.8
84
31

pe
ng
lu
ng
(F
SR

=
35
%
)

41
.0
26
50

2.
86
82
8

44
.0
32
00

13
.8
62
10

57
.3
51
00

0.
49
53
8

57
.7
00
00

4.
34
19
6

51
.9
37
44

pe
ng
lu
ng
(F
SR

=
75
%
)

81
.8
03
50

1.
97
93
2

11
1.
49
30
0

16
.4
86
59

12
0.
90
10
0

0.
76
63
9

12
1.
35
00
0

8.
11
93
4

11
2.
60
73
1

W
av
ef
ro
m
E
W
(F
SR

=
25
%
)

4.
61
15
0

0.
17
25
7

7.
24
55
0

0.
87
52
0

7.
98
95
0

0.
08
19
8

6.
94
95
0

1.
31
37
1

7.
23
86
3

W
av
ef
ro
m
E
W
(F
SR

=
35
%
)

6.
28
40
0

0.
25
34
9

9.
58
65
0

0.
70
32
3

11
.2
53
50

0.
84
38
6

9.
74
85
0

1.
44
43
4

9.
94
17
5

W
av
ef
ro
m
E
W
(F
SR

=
75
%
)

12
.1
33
50

0.
51
93
3

15
.2
80
00

1.
88
20
0

17
.5
60
00

1.
76
42
2

16
.3
48
50

2.
23
07
8

16
.6
26
88

K
rv
sk
pE

W
(F
SR

=
25
%
)

4.
23
50
0

0.
15
04
6

5.
67
40
0

0.
61
81
3

5.
60
95
0

0.
19
29
1

6.
69
45
0

1.
41
74
6

5.
78
48
8

K
rv
sk
pE

W
(F
SR

=
35
%
)

5.
86
85
0

0.
29
49
8

5.
62
95
0

0.
99
24
8

8.
19
60
0

3.
99
07
7

8.
44
50
0

1.
73
11
5

7.
37
42
5

K
rv
sk
pE

W
(F
SR

=
75
%
)

12
.2
29
58

21
.8
71
48

9.
24
50
0

2.
89
44
2

15
.5
38
00

2.
04
89
6

14
.5
97
50

2.
10
94
3

14
.0
92
01

or
lr
aw

s1
0P

(F
SR

=
25
%
)

85
6.
73
75
0

67
.4
84
78

15
5.
43
00
0

35
.1
89
15

12
82
.5
81
00

12
.7
80
39

12
91
.2
50
00

20
.8
77
78

96
4.
25
12
5

or
lr
aw

s1
0P

(F
SR

=
35
%
)

12
57
.1
03
00

10
1.
52
45
9

25
3.
90
60
0

65
.6
66
60

18
46
.7
62
00

7.
45
60
0

18
50
.1
50
00

27
.8
53
52

14
69
.7
70
81

or
lr
aw

s1
0P

(F
SR

=
75
%
)

24
96
.3
37
00

24
6.
53
24
8

67
7.
10
65
0

24
4.
41
07
7

38
60
.5
17
50

16
.1
32
20

38
64
.9
00
00

42
.5
53
87

29
89
.2
22
50

C
L
L
_S

U
B
_1
11
(F
SR

=
25
%
)

10
36
.9
61
50

11
0.
33
18
0

29
0.
41
65
0

11
5.
72
56
0

14
12
.4
36
50

16
.0
05
00

14
24
.2
00
00

27
.4
96
60

10
94
.3
26
44

C
L
L
_S

U
B
_1
11
(F
SR

=
35
%
)

14
30
.2
47
50

12
3.
50
65
6

45
6.
42
25
0

19
6.
61
86
0

19
89
.9
66
00

14
.5
05
31

19
81
.2
00
00

31
.1
74
55

15
43
.4
61
06

C
L
L
_S

U
B
_1
11
(F
SR

=
75
%
)

21
63
.3
09
46

24
3.
60
42
8

12
40
.6
66
50

66
3.
52
56
9

42
37
.8
69
00

22
.1
28
11

42
58
.7
50
00

40
.3
39
19

30
72
.4
87
99

(c
on
tin

ue
d)

166 R. A. Khurma et al.

Ta
bl
e
10

(c
on
tin

ue
d)

B
en
ch
m
ar
k

C
hi
-s
qu

ar
e
B
W
O
A

C
hi
-s
qu
ar
e
B
FF

A
C
hi
-s
qu

ar
e
B
B
A
T

C
hi
-s
qu

ar
e
B
C
S

W
ra
pp
er
s

A
vg
.F

S

A
vg
_F

S
St
d_
FS

A
vg
_F

S
St
d_
FS

A
vg
_F

S
St
d_
FS

A
vg
_F

S
St
d_
FS

B
re
as
tc
an
ce
r(
F
SR

=
25
%
)

2.
00
00
0

0.
00
00
0

2.
00
00
0

0.
00
00
0

1.
85
15
0

0.
02
51
9

2.
00
00
0

0.
00
00
0

1.
89
75
6

B
re
as
tc
an
ce
r(
F
SR

=
35
%
)

2.
29
95
0

0.
47
05
0

2.
70
00
0

0.
47
01
6

2.
30
75
0

0.
38
51
0

2.
48
55
0

0.
08
72
7

2.
34
94
4

B
re
as
tc
an
ce
r(
F
SR

=
75
%
)

4.
41
65
0

0.
48
65
2

4.
47
65
0

0.
72
35
5

4.
35
15
0

1.
12
79
9

4.
46
65
0

0.
29
82
8

4.
25
24
4

pe
ng
lu
ng
(F
SR

=
25
%
)

42
.4
89
00

4.
71
90
3

40
.3
78
00

4.
84
40
7

36
.8
35
00

12
.0
33
45

40
.4
83
00

1.
34
40
2

37
.8
84
31

pe
ng
lu
ng
(F
SR

=
35
%
)

57
.0
50
00

4.
71
81
1

55
.8
50
00

4.
86
96
2

45
.3
71
50

13
.9
73
25

57
.1
18
50

1.
37
76
7

51
.9
37
44

pe
ng
lu
ng
(F
SR

=
75
%
)

12
3.
03
15
0

5.
34
82
8

12
2.
60
20
0

0.
17
20
9

10
0.
02
10
0

43
.5
78
13

11
9.
65
65
0

1.
89
43
9

11
2.
60
73
1

W
av
ef
ro
m
E
W
(F
SR

=
25
%
)

7.
76
50
0

0.
54
71
5

7.
96
45
0

0.
53
27
5

7.
53
15
0

0.
93
11
6

7.
85
20
0

0.
36
92
9

7.
23
86
3

W
av
ef
ro
m
E
W
(F
SR

=
35
%
)

11
.0
87
00

0.
81
48
8

10
.4
34
00

0.
74
45
7

10
.0
58
50

1.
25
76
7

11
.0
82
00

1.
17
07
6

9.
94
17
5

W
av
ef
ro
m
E
W
(F
SR

=
75
%
)

18
.4
21
50

49
.4
28
53

17
.8
40
00

1.
90
11
5

17
.9
69
00

2.
21
69
1

17
.4
62
50

1.
91
83
2

16
.6
26
88

K
rv
sk
pE

W
(F
SR

=
25
%
)

5.
96
40
0

0.
52
77
3

5.
90
70
0

0.
42
87
7

6.
41
90
0

0.
68
02
4

5.
77
60
0

0.
48
95
8

5.
78
48
8

K
rv
sk
pE

W
(F
SR

=
35
%
)

7.
14
85
0

1.
07
65
1

7.
26
45
0

1.
01
81
8

8.
83
75
0

1.
34
11
3

7.
60
45
0

0.
69
06
9

7.
37
42
5

K
rv
sk
pE

W
(F
SR

=
75
%
)

14
.8
35
00

2.
20
71
2

14
.7
59
00

1.
54
65
2

16
.4
86
50

3.
26
44
2

15
.0
45
50

1.
97
15
3

14
.0
92
01

or
lr
aw

s1
0P

(F
SR

=
25
%
)

12
50
.1
30
50

15
3.
31
57
3

12
88
.7
17
00

18
.9
71
34

60
5.
92
35
0

66
1.
28
18
2

98
3.
24
05
0

25
8.
30
36
6

96
4.
25
12
5

or
lr
aw

s1
0P

(F
SR

=
35
%
)

18
49
.4
76
50

29
.6
97
10

18
48
.0
35
50

27
.3
37
72

12
60
.0
61
50

86
4.
00
31
8

15
92
.6
72
00

30
4.
80
67
9

14
69
.7
70
81

or
lr
aw

s1
0P

(F
SR

=
75
%
)

38
72
.0
39
50

35
.4
73
33

38
58
.4
51
50

55
.5
94
36

20
14
.8
84
50

19
81
.3
16
52

32
69
.5
43
50

74
0.
83
74
1

29
89
.2
22
50

C
L
L
_S

U
B
_1
11
(F
SR

=
25
%
)

14
12
.5
01
50

21
.4
17
18

14
17
.2
05
00

23
.7
24
41

10
20
.9
06
00

51
5.
99
77
7

73
9.
98
45
0

55
4.
05
08
4

10
94
.3
26
44

C
L
L
_S

U
B
_1
11
(F
SR

=
35
%
)

19
90
.6
64
50

20
.4
70
12

19
79
.7
02
50

28
.4
90
44

14
67
.1
66
50

80
7.
87
79
6

10
52
.3
19
00

72
9.
63
05
0

15
43
.4
61
06

C
L
L
_S

U
B
_1
11
(F
SR

=
75
%
)

42
53
.2
08
00

34
.7
39
69

42
46
.4
32
00

40
.3
25
03

25
20
.9
29
00

19
13
.7
05
02

16
58
.7
40
00

14
26
.4
70
55

30
72
.4
87
99

EvoloPy-FS: An Open-Source Nature-Inspired … 167

Ta
bl
e
11

H
yb
ri
d
ch
i-
sq
ua
re

w
ra
pp
er

re
su
lts

ba
se
d
on

ru
nn
in
g
tim

e
m
et
ri
c
(s
ec
on
ds

pe
r
ru
n)

B
en
ch
m
ar
k

C
hi
-s
qu
ar
e
B
PS

O
C
hi
-s
qu
ar
e
B
M
V
O

C
hi
-s
qu
ar
e
B
M
FO

C
hi
-s
qu
ar
e
B
G
W
O

A
vg
.r
un
ni
ng

tim
e

A
vg
_t
im

e
St
d_

tim
e

A
vg
_t
im

e
St
d_

tim
e

A
vg
_t
im

e
St
d_

tim
e

A
vg
_t
im

e
St
d_

tim
e

B
re
as
tc
an
ce
r(
F
SR

=
25
%
)

6.
31
93
2

0.
13
53
1

10
.3
12
35

0.
17
76
1

39
.4
34
88

6.
11
94
2

6.
53
13
3

0.
10
49
9

13
.1
43
66

B
re
as
tc
an
ce
r(
F
SR

=
35
%
)

6.
45
10
6

0.
13
45
6

12
.0
78
97

2.
63
97
9

40
.5
25
21

6.
16
57
3

6.
79
13
5

0.
09
67
6

14
.0
60
29

B
re
as
tc
an
ce
r(
F
SR

=
75
%
)

8.
01
74
7

1.
74
52
8

11
.9
85
59

2.
30
95
6

47
.4
95
58

0.
71
63
9

7.
84
57
2

0.
22
62
1

15
.7
60
8

pe
ng
lu
ng
(F
SR

=
25
%
)

11
.1
47
84

2.
19
89
4

18
.2
47
25

0.
22
84
2

58
.7
05
25

0.
61
46
0

23
.0
36
50

4.
21
00
0

20
.4
10
94

pe
ng
lu
ng
(F
SR

=
35
%
)

13
.8
67
15

3.
49
67
5

17
.5
22
85

3.
85
79
5

70
.2
90
95

1.
21
50
2

29
.1
36
40

5.
74
19
0

23
.0
92
20

pe
ng
lu
ng
(F
SR

=
75
%
)

30
.1
26
81

6.
85
15
5

25
.3
80
12

4.
73
78
6

10
6.
71
36
4

13
.6
08
01

52
.1
89
99

8.
59
56
9

36
.3
34
04

W
av
ef
ro
m
E
W
(F
SR

=
25
%
)

92
.3
22
75

1.
71
96
3

13
2.
27
85
3

10
.9
07
14

35
1.
98
45
3

76
.4
12
30

67
.5
74
56

7.
45
86
6

13
7.
45
21
31
3

W
av
ef
ro
m
E
W
(F
SR

=
35
%
)

11
8.
34
84
5

19
.0
31
72

17
4.
62
61
8

8.
96
91
6

73
3.
18
84
5

16
.0
03
77

16
9.
88
02
2

15
.6
65
79

27
5.
93
78
6

W
av
ef
ro
m
E
W
(F
SR

=
75
%
)

30
0.
08
17
2

16
.5
56
71

20
8.
54
52
4

49
.1
93
28

22
13
.5
75
01

37
.4
06
72

30
7.
73
75
2

30
.0
83
85

61
5.
09
84
5

K
rv
sk
pE

W
(F
SR

=
25
%
)

33
.4
78
78

0.
91
95
6

44
.5
95
91

1.
56
64
6

15
9.
66
51
7

2.
39
42
9

38
.8
26
83

8.
12
91
2

59
.7
35
68

K
rv
sk
pE

W
(F
SR

=
35
%
)

38
.2
21
02

0.
89
04
7

47
.5
92
05

1.
70
39
5

18
7.
99
31
9

3.
99
07
7

47
.2
54
62

9.
39
38
7

68
.4
00
07

K
rv
sk
pE

W
(F
SR

=
75
%
)

65
.4
24
53

1.
75
43
2

67
.6
43
83

6.
85
87
6

39
5.
46
63
8

6.
80
14
4

85
.4
11
25

5.
59
70
0

13
7.
61
85
6

or
lr
aw

s1
0P

(F
SR

=
25
%
)

18
0.
75
92
1

1.
87
75
1

10
2.
10
58
6

1.
82
24
9

55
6.
97
33
9

4.
05
74
4

32
9.
22
18
7

8.
30
17
2

17
9.
88
69
7

or
lr
aw

s1
0P

(F
SR

=
35
%
)

29
2.
04
37
8

73
.6
12
13

18
7.
21
77
0

50
.3
09
57

12
90
.5
52
25

22
.9
41
86

79
6.
15
40
0

10
4.
74
73
4

38
7.
12
30
3

or
lr
aw

s1
0P

(F
SR

=
75
%
)

54
8.
03
54
9

8.
65
54
6

30
3.
23
95
6

5.
00
93
5

16
89
.1
44
21

22
.0
75
29

10
26
.5
53
26

10
.5
41
31

54
7.
47
36
2

C
L
L
_S

U
B
_1
11
(F
SR

=
25
%
)

20
6.
23
46
2

3.
97
39
0

11
6.
93
64
2

2.
19
11
5

64
4.
48
53
3

11
.8
86
02

37
8.
81
45
2

5.
77
62
2

20
9.
46
52
6

C
L
L
_S

U
B
_1
11
(F
SR

=
35
%
)

45
5.
51
38
0

1.
93
31
9

21
4.
46
91
0

38
.3
76
87

13
09
.8
23
65

10
0.
47
62
4

83
0.
52
30
5

38
.4
97
20

44
1.
10
49
9

C
L
L
_S

U
B
_1
11
(F
SR

=
75
%
)

60
1.
88
74
7

12
.2
22
85

33
6.
04
42
5

6.
50
71
6

18
77
.2
36
17

46
.7
97
18

11
24
.1
05
58

50
.3
73
85

61
6.
84
72
5

(c
on
tin

ue
d)

168 R. A. Khurma et al.

Ta
bl
e
11

(c
on
tin

ue
d)

B
en
ch
m
ar
k

C
hi
-s
qu
ar
e
B
W
O
A

C
hi
-s
qu
ar
e
B
FF

A
C
hi
-s
qu
ar
e
B
B
A
T

C
hi
-s
qu

ar
e
B
C
S

A
vg
.r
un
ni
ng

tim
e

A
vg
_t
im

e
St
d_

tim
e

A
vg
_t
im

e
St
d_

tim
e

A
vg
_t
im

e
St
d_

tim
e

A
vg
_t
im

e
St
d_

tim
e

B
re
as
tc
an
ce
r(
F
SR

=
25
%
)

16
.7
42
23

3.
30
29
9

7.
70
53
6

1.
72
99
0

6.
65
90
0

0.
12
44
8

11
.4
44
77

1.
45
44
2

13
.1
43
66

B
re
as
tc
an
ce
r(
F
SR

=
35
%
)

21
.6
94
24

3.
43
82
0

6.
97
01
3

0.
15
35
9

6.
80
36
2

0.
16
57
0

11
.1
67
76

0.
23
45
9

14
.0
60
29

B
re
as
tc
an
ce
r(
F
SR

=
75
%
)

22
.6
14
77

3.
73
36
3

7.
37
46
0

0.
12
93
5

7.
12
73
7

0.
30
22
1

13
.6
25
68

2.
85
89
7

15
.7
60
8

pe
ng
lu
ng
(F
SR

=
25
%
)

25
.2
94
86

4.
88
03
6

6.
09
82
8

1.
02
44
1

6.
12
87
3

0.
96
07
3

14
.6
28
81

0.
21
12
0

20
.4
10
94

pe
ng
lu
ng
(F
SR

=
35
%
)

28
.3
16
58

5.
66
18
9

9.
30
82
8

0.
16
10
0

6.
05
66
5

0.
12
25
2

10
.2
38
73

1.
09
45
5

23
.0
92
20

pe
ng
lu
ng
(F
SR

=
75
%
)

45
.5
96
96

0.
57
87
8

6.
77
91
4

0.
17
20
9

10
.8
20
26

0.
42
49
3

13
.0
65
43

2.
62
15
6

36
.3
34
04

W
av
ef
ro
m
E
W
(F
SR

=
25
%
)

11
6.
32
32
9

5.
37
84
5

68
.4
42
19

2.
75
82
4

15
2.
32
80
4

31
.7
85
92

11
8.
36
31
6

2.
63
21
6

13
7.
45
21
31
3

W
av
ef
ro
m
E
W
(F
SR

=
35
%
)

29
1.
92
54
0

27
.4
72
39

17
4.
42
41
5

4.
15
87
4

23
9.
34
02
4

32
.8
15
08

30
5.
76
98
0

5.
71
52
7

27
5.
93
78
6

W
av
ef
ro
m
E
W
(F
SR

=
75
%
)

46
6.
21
31
2

49
.4
28
53

30
1.
67
44
1

12
.0
45
59

55
4.
25
72
9

71
.3
35
89

56
8.
70
32
9

9.
67
01
8

61
5.
09
84
5

K
rv
sk
pE

W
(F
SR

=
25
%
)

57
.3
42
17

1.
65
46
8

37
.9
03
33

7.
45
90
7

38
.3
28
96

2.
69
33
3

67
.7
44
27

11
.3
01
66

59
.7
35
68

K
rv
sk
pE

W
(F
SR

=
35
%
)

65
.6
07
92

2.
79
43
0

39
.2
49
47

0.
95
56
2

46
.7
26
43

6.
21
50
8

74
.5
55
87

1.
58
84
7

68
.4
00
07

K
rv
sk
pE

W
(F
SR

=
75
%
)

13
2.
40
29
2

9.
06
03
8

82
.9
84
03

2.
77
60
1

11
2.
55
62
0

26
.9
45
56

15
9.
05
93
7

4.
13
82
0

13
7.
61
85
6

or
lr
aw

s1
0P

(F
SR

=
25
%
)

17
9.
05
40
8

2.
66
24
7

23
.2
12
24

0.
58
64
3

21
.6
86
96

6.
68
02
0

46
.0
82
15

0.
62
62
5

17
9.
88
69
7

or
lr
aw

s1
0P

(F
SR

=
35
%
)

35
2.
61
94
5

73
.4
81
64

44
.2
24
80

9.
48
87
8

33
.4
60
60

9.
17
10
6

10
0.
71
16
5

13
.6
35
51

38
7.
12
30
3

or
lr
aw

s1
0P

(F
SR

=
75
%
)

53
9.
21
16
5

7.
38
58
6

71
.3
72
95

2.
32
80
1

63
.6
72
75

22
.6
74
64

13
8.
55
90
7

2.
67
97
8

54
7.
47
36
2

C
L
L
_S

U
B
_1
11
(F
SR

=
25
%
)

20
5.
31
69
8

4.
47
32
5

31
.4
26
11

0.
64
65
2

30
.8
71
81

7.
77
72
5

61
.6
36
29

0.
84
41
2

20
9.
46
52
6

C
L
L
_S

U
B
_1
11
(F
SR

=
35
%
)

45
8.
09
10
1

78
.9
84
22

67
.1
88
35

1.
75
75
3

64
.7
73
10

16
.8
55
28

12
8.
45
78
5

2.
30
07
3

44
1.
10
49
9

C
L
L
_S

U
B
_1
11
(F
SR

=
75
%
)

60
4.
48
00
1

5.
48
09
9

10
0.
79
42
1

13
.8
30
71

11
3.
97
44
4

38
.5
66
10

17
6.
25
58
3

15
.6
66
81

61
6.
84
72
5

EvoloPy-FS: An Open-Source Nature-Inspired … 169

Table 12 Chi-square results

Benchmark Error rate No. of selected
features

Time
(seconds/run)

Breastcancer(FSR = 25%) 0.05195 2 0.03100

Breastcancer(FSR = 35%) 0.03896 3 0.03200

Breastcancer(FSR = 75%) 0.03896 7 0.04000

penglung(FSR = 25%) 0.50000 81 0.13500

penglung(FSR%) 0.37500 114 0.14400

penglung(FSR%) 0.37500 244 0.15400

WavefromEW(FSR%) 0.26055 10 0.45240

WavefromEW(FSR%) 0.18349 14 0.49920

WavefromEW(FSR%) 0.23853 30 0.53040

KrvskpEW(FSR = 25%) 0.07163 9 0.24600

KrvskpEW(FSR = 35%) 0.07736 13 0.26100

KrvskpEW(FSR = 75%) 0.08883 27 0.27700

orlraws10P(FSR = 25%) 0.54545 2576 5.39700

orlraws10P(FSR = 35%) 0.45455 3606 5.46200

orlraws10P(FSR = 75%) 0.54545 7728 7.63600

CLL_SUB_111(FSR = 25%) 0.76923 2835 8.23300

CLL_SUB_111(FSR = 35%) 0.76923 3969 8.45100

CLL_SUB_111(FSR = 75%) 0.76923 8505 9.81300

• orlraws10P results: For all optimizers, the error rate decreased for allFSRs and the
minimum error rates achieved when FSRwas 35%. For FSR of 35%, the error rate
decreased by 7.96%, the feature reduction ratio was 85.7%, and the running time
reduced by 56% of the time needed for applying the wrapper without chi-square.

• CLL_SUB_111 results: Almost for all optimizers, the error rate decreased for all
FSRs and the minimum error rates achieved when FSRwas 35%. For FSR of 35%,
the error rate decreased by 1.67%, the feature reduction ratio was 86.4%, and the
running time reduced by 58% of the time needed for applying the wrapper without
chi-square.

In general, as noted from orlraws10P and CLL_SUB_111 results, we can say that
for the large dimensionality datasets, the integration of chi-square filter with wrapper
approach gets benefits by reducing the error rate, reducing the number of selected
features, and reducing the running time so it is recommended to apply chi-square
wrapper with huge datasets. Also, the best FSR that can be assigned to K parameter
of chi-square filter is 35% for the large dimensionality and the datasets with large
number of instances. On the other hand, for small dimensionality datasets such as
breastcancer, the best FSR is 75%. This can be explained that when the number
of features is small, we need to select most of the features to reduce the error of
classification. Another thing to note is the penglung dataset where making any di-
mensionality reduction using the chi–square filter increased the error rate. This can

170 R. A. Khurma et al.

be explained by saying that all features of this dataset are significant and relevant
(features are not redundant). The last note regarding the BPSO wrapper which is in
most of the cases (4 out of 6 datasets) the integration of chi-square increased the
error rate for all values of FSR.

The results of the last-stage experiments showed that applying the chi-square
without wrapper decreased the error rate on small dimensionality datasets and in-
creased the error rate on large dimensionality datasets when compared with wrapper
and chi-square wrapper approaches. Also, the running time is smaller than wrapper
and chi-square wrapper.

8 Conclusion and Future Works

Recently, metaheuristic algorithms were utilized for optimizing FS problems in d-
ifferent applications. Developing specialized tools geared toward FS has attracted
many researchers for several reasons including the automation and acceleration of
the FS process, alleviating the implementation effort, minimizing the coding errors,
and facilitating the commoners with their applications. Proceeding from here, we
intended to develop EvoloPy-FS as a programming foundation that accepts further
modifications, additions, and improvements. From the experiments, we conclude
the possibility of applying the wrapper and filter–wrapper approaches for large di-
mensionality datasets and achieving more trustable results (minimum classification
errors) compared with applying filter approach only.

Our goals are ambitious to make EvoloPy-FS a full-scale metaheuristics tool
used to address FS by a broader community. For the future directions, we intend
to make a thorough revision for the code and make a significant expansion for the
framework components, namely: the benchmark functions, the evaluation criteria,
the datasets, and the experiments. By the same token, we plan to increase the number
of the implemented optimizers and study the impact of transfer functions on the FS
process.

References

1. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn
Res 3(Mar):1157–1182

2. Huan L, Hiroshi M (eds) (2007) Computational methods of feature selection. CRC Press
3. Zhao, Z, Liu H (2007) Spectral feature selection for supervised and unsupervised learning. In:

Proceedings of the 24th international conference on Machine learning. ACM
4. Huan L, Yu L (2005) Toward integrating feature selection algorithms for classification and

clustering. IEEE Trans Knowl Data Eng 17(4):491–502
5. Manoranjan D, Huan L (1997) Feature selection for classification. Intell Data Anal 1(3):131–

156
6. Hou C et al (2014) Joint embedding learning and sparse regression: a framework for unsuper-

vised feature selection. IEEE Trans Cybern 44(6):793–804

EvoloPy-FS: An Open-Source Nature-Inspired … 171

7. CeleuxGet al (2011)A framework for feature selection in clustering. JAmStatAssoc 105:713–
726. J Am Stat Assoc 106(493)

8. Zhao Z et al (2010) Advancing feature selection research. ASU Featur Sel Repos 2010:1–28
9. Li J et al (2017) Feature selection: a data perspective. ACM Computing Surveys (CSUR)

50(6):94
10. Ramrez-Gallego S et al (2018) An information theory-based feature selection framework for

big data under apache spark. IEEE Trans Syst, Man, Cybern: Syst 48(9):1441–1453
11. Verénica B-C, Noelia S-M, Amparo A-B (2015) Recent advances and emerging challenges of

feature selection in the context of big data. Knowl-Based Syst 86:33–45
12. Liu, H, Motoda H (2012) Feature selection for knowledge discovery and data mining vol 454.

Springer Science and Business Media
13. Kohavi R, John GH (1997)Wrappers for feature subset selection. Artif Intell 97(1–2):273–324
14. Abe S (2010) Feature selection and extraction. Support vector machines for pattern classifica-

tion. Springer, London, pp 331–341
15. Molina LC, Belanche L, Nebot À (2002) Feature selection algorithms: a survey and experi-

mental evaluation. Data mining, 2002. ICDM 2003. 2002 IEEE international conference on.
Proceedings. IEEE

16. Yong L, Feng T, Zhiyong Z (2015) Feature selection based on dependency margin. IEEE Trans
Cybern 45(6):1209–1221

17. Ensan F, Bagheri E, Gašević D (2012) Evolutionary search-based test generation for software
product line feature models. In: International conference on advanced information systems
engineering. Springer, Berlin, Heidelberg

18. Yusta SC (2009) Different metaheuristic strategies to solve the feature selection problem.
Pattern Recognit Lett 30(5):525–534

19. Yang X-S (2013) Metaheuristic optimization: nature-inspired algorithms and applications.In:
Artificial intelligence, evolutionary computing and metaheuristics. Springer, Berlin, Heidel-
berg, pp 405–420

20. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–73
21. Koza JR (1992) Genetic programming II, automatic discovery of reusable subprograms. MIT

Press, Cambridge, MA
22. Kennedy J (2006) Swarm intelligence. Handbook of nature-inspired and innovative computing.

Springer, Boston, MA, pp 187–219
23. Eberhart R, Kennedy J (2011) ’A new optimizer using particle swarm theory. Micro Machine

and Human Science, 1995. MHS’95. In: Proceedings of the sixth international symposium on.
IEEE, 1995

24. Dorigo M, Birattari M (2011) Ant colony optimization. Encyclopedia of machine learning.
Springer, Boston, MA, pp 36–39

25. Xin-She Y, Suash D (2009) Cuckoo search via Lévy flights. In: World Congress on nature and
biologically inspired computing (2009) NaBIC 2009. IEEE, p 2009

26. Mirjalili S,Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69(2014):46–61
27. Mirjalili S,Mirjalili SM,HatamlouA (2016)Multi-verse optimizer: a nature-inspired algorithm

for global optimization. Neural Comput Appl 27(2):495–513
28. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic

paradigm. Knowl-Based Syst 89:228–249
29. Mirjalili S, Andrew L (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67
30. Xin-She Y (2010) A new metaheuristic bat-inspired algorithm. Nature inspired cooperative

strategies for optimization (NICSO) Springer vol. 2010. Berlin, Heidelberg, pp 65–74
31. Xin-She Y (2010) Firefly algorithm, Levy flights and global optimization. Research and de-

velopment in intelligent systems XXVI. Springer, London, pp 209–218
32. Mafarja M, Aljarah I, Faris H, Hammouri AI, Al-Zoubi AM, Mirjalili S (2019) Binary

grasshopper optimisation algorithm approaches for feature selection problems. Expert Syst
Appl 117:267–286

33. Ahmed S, Mafarja M, Faris H, Aljarah I (2018) Feature selection using salp swarm algo-
rithm with chaos. In: Proceedings of the 2nd international conference on intelligent systems,
metaheuristics, and swarm intelligence ACM, pp 65–69

172 R. A. Khurma et al.

34. Faris H, Al-Zoubi AM, Heidari AA, Aljarah I, Mafarja M, Hassonah MA, Fujita H (2019) An
intelligent system for spam detection and identification of the most relevant features based on
evolutionary random weight networks. Inf Fusion 48:67–83

35. Mafarja M, Aljarah I, Heidari AA, Faris H, Fournier-Viger P, Li X, Mirjalili S (2018) Binary
dragonfly optimization for feature selection using time-varying transfer functions. Knowl-
Based Syst 161:185–204

36. Aljarah I, Mafarja M, Heidari AA, Faris H, Zhang Y, Mirjalili S (2018) Asynchronous accel-
erating multi-leader salp chains for feature selection. Appl Soft Comput 71:964–979

37. Mafarja M, Aljarah I, Heidari AA, Hammouri AI, Faris H, Al-Zoubi AM, Mirjalili S (2018)
Evolutionary population dynamics and grasshopper optimization approaches for feature selec-
tion problems. Knowl-Based Syst 145:25–45

38. Wolpert DH, MacreadyWG (1997) No free lunch theorems for optimization. IEEE Trans Evol
Comput 1(1):67–82

39. Wall M (1996) GAlib: A C++ library of genetic algorithm components. Mech Eng Dep Mass
Inst Technol 87:54

40. Keijzer M et al (2001) Evolving objects: A general purpose evolutionary computation library.
in: International conference on artificial evolution (Evolution Artificielle). Springer, Berlin,
Heidelberg

41. EmmerichM,HosenbergR (2001)TEA-aC++ library for the designof evolutionary algorithms.
Universitätsbibliothek Dortmund

42. Harder R (2001) OpenTS: an open source java tabu search framework. INFORMS Annual
Meeting, Miami

43. Bleuler S et al (2003) PISA-a platform and programming language independent interface for
search algorithms. iN: International conference on evolutionary multi-criterion optimization.
Springer, Berlin, Heidelberg

44. Cahon S, Melab N, Talbi E-G (2004) Paradiseo: a framework for the reusable design of parallel
and distributed metaheuristics. J Heuristics 10(3):357–380

45. Wagner S, Affenzeller M (2005) Heuristiclab: a generic and extensible optimization environ-
ment. Adaptive and natural computing algorithms. Springer, Vienna, pp 538–541

46. Streichert F, UlmerH (2005) JavaEvA-a java framework for evolutionary algorithms. In: Center
for Bioinformatics Tübingen, University of Tübingen, Technical Report WSI-2005-06

47. Li Y, Yu S-M (2006) A unified optimization framework for real world problems. Lect Ser
Comput Comput Sci 7:816–819

48. Pohlheim H (2007) Geatbx: genetic and evolutionary algorithm toolbox for use with matlab.
H. Pohlheim, Berlin http://www.geatbx.com

49. Pampara, G, Engelbrecht AP, Cloete T (2008) Cilib: a collaborative framework for computa-
tional intelligence algorithms-part I. In: IEEE International joint conference onneural networks,
2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE

50. Ventura S et al (2008) JCLEC: a Java framework for evolutionary computation. Soft Comput
12(4):381–392

51. Perone CS (2009) Pyevolve: a Python open-source framework for genetic algorithms. Acm
Sigevolution 4(1):12–20

52. KronfeldM, Planatscher H, Zell A (2010) The EvA2 optimization framework. In: International
Conference on Learning and Intelligent Optimization. Springer, Berlin, Heidelberg

53. Durillo JJ, Nebro AJ (2011) JMetal: a Java framework for multi-objective optimization. Adv
Eng Softw 42(10):760–771

54. Weppenaar DVI, Vermaak HJ (2011) Solving planning problems with drools planner a tutorial.
Interim: Interdiscip J 10(1):91–109

55. Lukasiewycz M et al (2011) Opt4J: a modular framework for meta-heuristic optimization. In:
Proceedings of the 13th annual conference on Genetic and evolutionary computation. ACM

56. Fortin F-A et al (2012) DEAP: evolutionary algorithms made easy. J Mach Learn Res
13(Jul):2171–2175

57. Izzo, D (2012) Pygmo and pykep: open source tools for massively parallel optimization in
astrodynamics (the case of interplanetary trajectory optimization). In: Proceedings of the fifth
international conference on astrodynamics tools and techniques, ICATT

http://www.geatbx.com

EvoloPy-FS: An Open-Source Nature-Inspired … 173

58. Luke, S (2017) ’ECJ then and now. In: Proceedings of the genetic and evolutionary computation
conference companion. ACM

59. Tian Y et al (2017) PlatEMO: a MATLAB platform for evolutionary multi-objective optimiza-
tion [educational forum]. IEEE Comput Intell Mag 12(4):73–87

60. Kohavi R et al (1994) MLC++: a machine learning library in C++. In: Proceedings sixth
international conference on tools with artificial intelligence. TAI 94. IEEE

61. Witten IH et al (1999) Weka: practical machine learning tools and techniques with Java imple-
mentations

62. Hanke M et al (2009) PyMVPA: a python toolbox for multivariate pattern analysis of fMRI
data. Neuroinformatics 7(1):37–53

63. Kachel A et al (2010) Infosel++: information based feature selection c++ library. In: Interna-
tional conference on artificial intelligence and soft computing. Springer, Berlin, Heidelberg

64. Schaul T et al (2010) PyBrain. J Mach Learn Res 11(Feb):743–746
65. Alcalá-Fdez J et al (2011) Keel data-mining software tool: data set repository, integration of

algorithms and experimental analysis framework. J Mult-Valued Log Soft Comput 17
66. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O ... Vanderplas J (2011)

Scikit-learn: machine learning in Python. J Mach Learn Res 12(Oct):2825–2830
67. AlbaneseDet al (2012)mlpy:Machine learning python. arXiv preprint arXiv:1202.6548 (2012)
68. Curtin RR et al (2013) MLPACK: a scalable C++ machine learning library. J Mach Learn Res

14(Mar): 801–805
69. Demar J et al (2013) Orange: data mining toolbox in Python. J Mach Learn Res 14(1):2349–

2353
70. Thüm T et al (2014) FeatureIDE: an extensible framework for feature-oriented software de-

velopment. Sci Comput Program 79:70–85
71. Soufan O et al (2015) DWFS: a wrapper feature selection tool based on a parallel genetic

algorithm. PloS one 10(2):e0117988
72. RoffoG (2016) Feature selection library (MATLAB toolbox). arXiv preprint arXiv:1607.01327

(2016)
73. van Rossum G (1990–2004) Python programming language
74. Faris H, Aljarah I, Mirjalili S, Castillo PA, Guervés JJM (2016) EvoloPy: an open-source

nature-inspired optimization framework in python. In: IJCCI (ECTA), pp 171–177
75. FarisH,Aljarah I,Al-MadiN,Mirjalili S (2016)Optimizing the learning process of feedforward

neural networks using lightning search algorithm. Int J Artif Intell Tools 25(06):1650033
76. Faris H, Aljarah I, Mirjalili S (2016) Training feedforward neural networks using multi-verse

optimizer for binary classification problems. Appl Intell 45(2):322–332
77. Aljarah I, Faris H, Mirjalili S (2018) Optimizing connection weights in neural networks using

the whale optimization algorithm. Soft Comput 22(1):1–15
78. Emary E, Zawbaa HM, Hassanien AE (2016) Binary grey wolf optimization approaches for

feature selection. Neurocomputing 172(2016):371–381
79. Xue B, ZhangM, BrowneWN (2013) Novel initialisation and updatingmechanisms in PSO for

feature selection in classification. In: European conference on the applications of evolutionary
computation. Springer, Berlin, Heidelberg

80. Chuang L-Y et al (2008) Improved binary PSO for feature selection using gene expression
data. Comput Biol Chem 32(1):29–38

81. Huang CL, Dun JF (2008) A distributed PSO-SVM hybrid system with feature selection and
parameter optimization. Appl Soft Comput 8:1381–1391

82. Xue B, Zhang M, Browne WN (2012) New fitness functions in binary particle swarm opti-
misation for feature selection. In: IEEE congress on evolutionary computation (CEC2012) pp
2145–2152

83. LinWet al (2016) ’An empirical study on the characteristics of Python fine-grained source code
change types. In: 2016 IEEE international conference on software maintenance and evolution
(ICSME). IEEE

http://arxiv.org/abs/1202.6548
http://arxiv.org/abs/1607.01327

Multi-objective Particle Swarm
Optimization: Theory, Literature
Review, and Application in Feature
Selection for Medical Diagnosis

Maria Habib, Ibrahim Aljarah, Hossam Faris and Seyedali Mirjalili

Abstract Disease prediction has a vital role in health informatics. The early detec-
tion of diseases assists in taking preventive steps and more functional treatment.
Incorporating intelligent classification models and data analysis methods has intrin-
sic impact on converting such trivial, row data into worthy useful knowledge. Due
to the explosion in computational and medical technologies, we observe an explo-
sion in the volume of health- and medical-related data. Medical datasets are high-
dimensional datasets, which make the process of building a classification model that
searches for optimal set of features a hard, yet more challenging task. Hence, this
chapter introduces a fundamental class of optimization known as the multi-objective
evolutionary algorithms (MOEA) for optimization, which handles the feature selec-
tion for classification in medical applications. The chapter presents an introduction
to multi-objective optimization and their related mathematical models. Furthermore,
this chapter investigates the utilization of a well-regarded multi-objective particle
swarm optimization (MOPSO) as wrapper-based feature selection method, in order
to detect the presence or absence of different types of diseases. Therefore, the per-
formance of MOPSO and its behavior are examined by comparing it with other
well-regarded MOEAs on several medical datasets. The experimental results on
most of the medical datasets show that the MOPSO algorithm outperforms other
algorithms such as non-dominated sorting genetic algorithm (NSGA-II) and multi-
objective evolutionary algorithm based on decomposition (MOEA/D) in terms of
classification accuracy and minimum number of features.

M. Habib · I. Aljarah · H. Faris
King Abdullah II School for Information Technology, The University of Jordan,
Amman, Jordan
e-mail: i.aljarah@ju.edu.jo

H. Faris
e-mail: hossam.faris@ju.edu.jo

S. Mirjalili (B)
Torrens University Australia, Brisbane, QLD 4006, Australia
e-mail: ali.mirjalili@gmail.com

Griffith University, Brisbane, QLD 4111, Australia

© Springer Nature Singapore Pte Ltd. 2020
S. Mirjalili et al. (eds.), Evolutionary Machine Learning Techniques,
Algorithms for Intelligent Systems, https://doi.org/10.1007/978-981-32-9990-0_9

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-32-9990-0_9&domain=pdf
mailto:i.aljarah@ju.edu.jo
mailto:hossam.faris@ju.edu.jo
mailto:ali.mirjalili@gmail.com
https://doi.org/10.1007/978-981-32-9990-0_9

176 M. Habib et al.

Keywords Multi-objective optimization · Feature selection · Machine learning ·
Evolutionary algorithms · Medical applications

1 Introduction

Integrating machine learning techniques into clinical decision support systems
(CDSS) for diagnosis considers a fundamental improvement in healthcare and med-
ical informatics [7, 9]. Decision support systems (DSS) depend on computer-based
systems that enhance the process of decisionmaking [9]. Ifwe are talking aboutCDSS
or as a sub-term the diagnosis decision support system (DDSS), then we are talking
about computational methods that analyze medical data and help in different situa-
tions, as in disease detection and treatment [9]. In most cases, medical datasets are
very high-dimensional datasets; therefore, developing classification models and fea-
ture selectionmethods is relatively hard problem.Having n number of featuresmeans
to search for the optimal set of features in a search space of size 2n , which is NP-hard
search problem. NP-hard problems cannot be addressed using the known algorithms
in polynomial time. Therefore, the time required for solving them increases expo-
nentially with the growing size of the problem or the number of objectives. Scientists
usually use heuristic algorithms in order to solve such hard optimization problems
[66]. Metaheuristic algorithm is a sub-category of heuristic algorithms, which are
stochastic algorithms that compromise between randomization and local search [66].
However, metaheuristics are well-regarded choice of methods for solving most of
hard optimization problems [62].

Computational intelligence (CI) is a sub-field of artificial intelligence. CI covers
artificial neural networks, evolutionary computation, and swarm intelligence [24, 28].
Evolutionary computation is a kind of stochastic andmetaheuristic optimization tech-
niques that mimic the natural evolution process, inspired by the Darwinian principles
in nature. Nature-inspired algorithms could be categorized based on the root of inspi-
ration into evolutionary-based, swarm-based, and physical- or chemical-based [66].
Evolutionary-based algorithms use mechanisms inspired by the biological evolution
like reproduction, mutation, and selection. Swarm intelligence algorithms study the
collective behavior of interacting agents that follow few simple rules, inspired by the
social behavior of animals or insects, such as the ants’ foraging behaviors, animal
herding, and bird flocking [4, 5, 25, 66].

Feature selection (FS) is an imperative reprocessing step with conflicting objec-
tives. The most common objective is to minimize the number of features, which is
often called dimensionality reduction. The second objective is often to minimize the
classification or prediction rate for a given dataset. Therefore, we can formulate and
treat feature selection problems as multi-objective problems.

Two common methods to optimize problems with multiple objectives are dis-
cussed in this paragraph. The firstmethod is called aggregation-basedmulti-objective
optimization, in which we combine multiple objectives in to a single objective using
a set of weights. The second method is ε-constraint. The former method suffers from

Multi-objective Particle Swarm Optimization: Theory, Literature … 177

the difficulty in finding uniformly distributed Pareto optimal solutions and failure
in finding non-cover-shaped Pareto optimal fronts as also discussed in [16]. In con-
trast, the latter solves the problem of non-convex objective space by preserving one
objective and restricting the other objectives using user-defined constraints. How-
ever, finding a feasible set of solutions depends highly on the initial ε-vector value.
Hence, the evolutionary search is used to find a set of optimal solutions simultane-
ously, and synergistically with different operators, such as the non-domination, the
niching, and the elitism [16].

Mainly, MOEAs have two main branches—the dominance-based and thebreak
decomposition-based. The dominance-based MOEA utilizes a selection method
based on Pareto domination. A popular example is the NSGA-II algorithm [15],
which uses non-dominated sorting based on elitism-preserving approach. Thebreak
decomposition-based MOEA decomposes multiple objectives into a number of
single-objective problems, such as the MOEA/D [67].

This chapter presents an interpretation for using multi-objective particle swarm
optimization as wrapper-based feature selection for medical diagnosis and also
presents a comparison with other well-regarded multi-objective evolutionarybreak
algorithms—theNSGA-II andMOEA/D.MOPSO showed promising results for fea-
ture selection for medical data and superior performance over other multi-objective
evolutionary algorithms.

The rest of the chapter is organized as follows: Sect. 3 presents the basic principles
and formulation for multi-objective problems, and Sect. 4 describes the framework
of multi-objective evolutionary optimization and in particular theMOPSO. Section5
illustrates the formulation of feature selection as multi-objective problem, besides
recent works of multi-objective feature selection in medical applications. Section6
shows the conducted experiments and obtained results. Finally, Sect. 7 is a summary
and conclusion of the chapter.

2 Literature Review

The importance of feature selection is continuously growing as the number of large
datasets is continuously increasing. Developing efficient computational techniques
to distinguish relevant features is at significant level, yet challenging. However, an
increasing number of research studies have been conducted for approaching the
feature selection problem. Broadly speaking, various metaheuristic algorithms have
been utilized for searching for the optimal subset of features, such as the adoption
of salp swarm optimization [2, 6, 27], dragonfly optimization [45, 47], grasshopper
optimization [3, 44, 46], multi-verse optimizer [26], and ant lion optimizer [48].

The medical datasets, normally, contain hundreds or thousands of features; hence,
several studies have been introduced the use of multi-objective evolutionary algo-
rithms for feature selection in medical frameworks. For instance, in [1] the authors

178 M. Habib et al.

present the utilization of evolutionary artificial neural networks based on the Pareto
differential evolution for the prediction of breast cancer. Other studies devoted for
the prediction of breast cancer, as in [18] where they implemented multi-objective
evolutionary approach based on multi-expression programming. In [34], the authors
have implemented multi-objective classifier based on multilayer perceptron (MLP)
and differential evolution, in which the multi-objective differential evolution is used
for optimizing the MLP.

Further, in [55], a multi-objective genetic programming has been designed to
optimize the decision trees and find the optimal decision tree models. The aim of
decision trees is predicting if the status of a diabetic patient deteriorates. In [53], a
multi-objective evolutionary algorithm based on NSGA-II is used for biclustering
gene expression data. Therefore, gene expression has a substantial relation between
genotypes and phenotypes. Further, in [63], the authors utilized both MOPSO and
NSGA-II for identifying the impressive features for Warfarin dose prediction, where
MOPSO achieved superior performance. Nonetheless, in [37] a multi-objective neu-
ral network is used for feature selection in the diagnosis of prostatic cancer.

In [61], an adaptive fuzzy and chaotic multi-objective PSO has been imple-
mented for selecting the optimal set of features (genes), form microarray and RNA-
sequencing gene expression datasets, in which the proposed algorithm achieved
remarkable results in terms of accuracy, sensitivity, and specificity. Interestingly,
in [42], Li and Yin implemented a multi-objective binary biogeography-based opti-
mization (MOBBBO) algorithm for feature selection of gene expression data. The
MOBBBO as wrapper-based FS was based on support vector machine and leave-
one-out cross-validation. They examined the performance of MOBBBO on ten gene
expression datasets, covering various diseases, as lung tumor, brain tumor, and
prostate tumor, in which MOBBBO outperformed NSGA-II algorithm.

Furthermore, in [58] two multi-objective gray wolf optimizer (MOGWO)
approaches have been proposed for cervical cancer detection. One of the methods
is based on a scalarized technique, and the other is based on non-dominated sorting
(NSGWO). NSGWO showed superior results as wrapper-based feature selection in
comparison with NSGA-II, multi-objective firefly algorithm, and other MOEAs. As
microarray is an important technology for the diagnosis of human diseases, in [22]
the authors conducted comparison study among several MOEAs for feature selec-
tion of cancer microarray datasets, where they used the Leukemia, Colon, and Lym-
phoma datasets to investigate the performance of NSGA-II, SPEA2, multi-objective
cross-generational elitist selection (MOCell), and heterogeneous recombination and
cataclysmic mutation (MOCHC), in which MOCHC has advantages over the other
MOEAs.

Generally, there are several research areas in medical informatics, where
researchers applied evolutionarymulti-objective algorithms, not just for disease diag-
nosis, but, moreover, for drug and pharmacological development [19].

Multi-objective Particle Swarm Optimization: Theory, Literature … 179

3 Multi-objective Optimization

Multi-objective problems (MOPs) are type of optimization problems that at least
two objective functions to be optimized, simultaneously [16]. As the objectives are
in conflict to each other, there is no optimal solution for MOPs, but a set of trade-
off solutions that called Pareto optimal set. MOPs, in literature, are also known as
multi-criteria or multi-attribute optimization [66]. Mathematically, any optimization
problem with constraints can be defined as follows in (Eqs. 1, 2, and 3) [16]:

Optimize F(X) = [f1(X), f2(X), . . . , fk(X)] (1)

where X represents an n-dimensional vector of decision variables that belongs to the
feasible solution space�, and defined as X = x1, . . . , xn; k is the number of objective
functions, if k = 1; then it is a single optimization problem, whereas having k > 3
objectives; then it is a many-objective optimization problem. An extreme case, when
k = 0 that is called a feasible problem, since any feasible solution in the solution
space is an optimal solution. Indeed, by supposing that F(X) is a minimization
problem, then the constraints are subject to:

gm(x) ≤ 0, m = 1, 2, . . . M (2)

h j (x) = 0, j = 1, 2, . . . J (3)

where gm(x) is the mth inequality constraint and h j (x) is the jth equality constraint.
The above equations allow having problems with zero or more constraints. In case of
no constraints, the problem is called unconstrained optimization problem. In case of
at least one constraint including equality or non-equality,we dealwith constraint opti-
mization problem. Depending on the equations used for objectives and constraints,
the problem is linear or nonlinear [66].

Essentially, the main idea is how to find the optimal solution among a set of
potential optimal solutions. In other words, consider a single-objective optimiza-
tion problem that has two solutions x1 and x2. We can find the optimal solution
by a simple comparison. Hence, x1 is better than x2, if and only if f (x1) > f (x2).
On the other hand, in the case of MOPs, the comparison among solutions is more
complex, since we are dealing with vector-valued solutions. Hence, the adoption of
Pareto Dominance relationship is essential for comparing the vectors. Suppose
that we have a minimization problem and two vector solutions; x1 and x2. we say
that x1 dominates x2 denoted by (x1 � x2) if f(x1) dominates f(x2), which means
all the components of f(x1) are not worse than the corresponding elements of f(x2)
and is better in at least one. Pareto Dominance relationship is represented by the
following equation:

180 M. Habib et al.

∀i : fi (x1) ≤ fi (x2) and ∃ j : f j (x1) < f j (x2)

where i and j ∈ {1, 2, 3, . . . , k}

In other words, if x3 is better in objective1 and worse in objective2, and x4 is better
in objective2 and worse in objective1, then both x3 and x4 are non-dominated
solutions and denoted by the Pareto optimal set as P∗ = {x∗ ∈ �}. The image of
the optimal Pareto set in the objective space called Pareto front, denoted as PF∗ =
{ f (x∗) | x∗ ∈ P} [16]. Figure1 illustrates the presentation of MOP and clarifies
the dominance concept. The figure shows an optimization function F maps feasible
solutions from the decision space into the objective space; in addition, it shows how
those feasible solutions might be non-dominated solutions, dominated solutions, or
optimal solutions on the Pareto front. In the this figure, neither Solution a nor
Solution b is a better solution, even so, both are better than Solution c.

Particularly, solving MOPs requires finding the set of Pareto optimal solutions.
But, there is the next step of applying the multi-criterion decision making for select-
ing the preferred solution among the optimal trade-off solutions. Therefore, choosing
a single preferred solution is important as well as the importance of finding a repre-
sentative Pareto optimal set of solutions.

There are threemain techniques for a decision-maker to select a solution. The a pri-
ori, a posteriori, and the interactive approach (progressive). In the a priori approach,
the preference information is predefined and is used to direct the search into one

c

b

a

f1(a) > f1(b)

f2(a) < f2(b)

Fig. 1 Representation ofmulti-objective optimization problem and dominance relation, where both
f1 and f2 are minimization problems

Multi-objective Particle Swarm Optimization: Theory, Literature … 181

part of the Pareto optimal front based on two different criteria, the aggregation-based
ordering and the aggregation-based scalarization,while the a posteriori approach uses
the preference information after the set of Pareto optimal solutions is found, relying
on one of three criteria, either the independent sampling, the cooperative search, or
the hybrid selection. This approach is computationally expensive and suffers from
difficulties in converging to the Pareto optimal front as the number of objectives
increases. The interactive approach integrates the preference information with the
multi-objective optimization algorithm during the optimization run, in which, after
a number of generations, and iteratively, the decision-makers should rank the best-
found non-dominated solutions according to their preference [16].

4 Multi-objective Evolutionary Optimization

Multi-objective evolutionary optimization is a combination of evolutionary compu-
tation and multi-criteria decision making. Evolutionary algorithms (EAs) or swarm-
based algorithms are metaheuristic or heuristic algorithms used to solve optimization
problems. Computationally, intelligent algorithms proved successful abilities in find-
ing global optimal solutions in case of high-dimensional search spaces [66], as well
as in non-differentiable functions and multi-objective problems [13].

Basically, EAs during the search for optimal solutions depend on a population
of solutions instead of searching using single solution at a time. The roots of evolu-
tionary algorithms return back to 1960s and 1970s, when the basic EAs’ principles
and concepts were established [33]. JH Holland created the basic framework for the
evolutionary algorithms which based on Darwin’s theory of evolution and the sur-
vival for the fittest. EAs are stochastic algorithms which rely on initial population of
solutions and evolve to the best solutions over generations.

Mainly, EAs contain three basic operations: First is the design of initial population
and control parameters, second is the design of a fitness function that assesses the
quality of potential solutions, and third is the design of genetic operators. The use of
genetic operators (as crossover and mutation) enhances the process of information
exchange among solutions and guides the algorithm to converge toward the optimal
solutions [33]. Thereafter, the EA algorithm continues iterating over the aforemen-
tioned operations until a stopping criterion is satisfied. Similarly, the swarm-based
algorithms start with initial population, involve a fitness function, a stopping criteria,
and instead of the genetic operators, the swarm-based algorithms use update and
move agents strategies by means of global and local best solutions in order to guide
the population toward the global optimum [66].

Conventionally, EAs have been applied to solve single-objective optimization
problems. However, practically, several real-world problems are more complex and
can bemodeled as problemswithmultiple optimizing objectives. Let us take an exam-
ple from the medical field, the problem of medical images reconstruction, in which
the aim is to minimize the error between the original image and the reconstructed
image, and at the same time, the need of the reconstructed image to be smooth and

182 M. Habib et al.

noiseless. It is difficult using single-objective optimization algorithms to obtain a
solution that satisfies both conflicting objectives simultaneously. Accordingly, since
EAs are population-based algorithms, they can handle more properly the nature of
multi-objective optimization problems [13].

Basically, different attempts have been initiated to solve multi-objective prob-
lems, such as optimizing the highest priority objective or converting the MOPs into
single-objective problems using weighted-sum techniques [13]. Primarily, the first
attempt to solve MOPs using evolutionary algorithms was by David Schaffer [60], in
mid-1980s, when he designed a vector-valued genetic algorithm (VEGA) that divides
the population into a number of sub-populations equal to the number of objectives,
each sub-population assigned a different fitness function relating to the objective
function, and then the sub-populations shuffled together for evolving the next gen-
eration [60]. In spite of that VEGA is simple to implement, but it was lacking the
diversity of solutions. Afterward, Goldberg suggested the use of Pareto dominance to
solve MOPs [57]. Until nearly 1995, different MOEAs have been proposed, such as
multi-objective genetic algorithm (MOGA) [56], a niched Pareto genetic algorithm
for multi-objective optimization [57], vector-optimized evolution strategy (VOES)
[41], and other variants, which all form the first generation of MOEAs.

Since then, new MOEAs started to adopt elitism techniques, forming a second
generation of evolutionary multi-objective optimization. A salient exemplar is the
NSGA algorithm [64], which proposed by Srinivas and Deb, in which NSGA utilizes
ranking, niching, and fitness sharing techniques tomaintain the diversity of solutions.
Other examples are as Pareto archived evolution strategy (PAES) [36] and strength
Pareto evolutionary algorithm (SPEA) [14]. Afterward, the decomposition approach
has been introduced with the development of multi-objective evolutionary algorithm
based on decomposition (MOEA/D) [67], which stands mainly on decomposing the
problem into a number of single-objective sub-problems.

The developments inMOEA continue; hence, different algorithms have been gen-
erated, such as MOPSO [23], multi-objective gray wolf optimizer [51], grasshopper
algorithm for multi-objective optimization [52], and themulti-objective ant lion opti-
mizer [49].

Generally, as the field of MOEAs has been matured, indeed, for any algorithm
approaching MOPs requires solving several crucial issues [13];

• How to obtain and store the non-dominated solutions during algorithm iterations.
• How to guide the current found Pareto front (PFcurrent) into the true Pareto front
(PFtrue). As illustrated in Fig. 2a, in which the algorithm guides the particles to
converge toward the true Pareto front.

• How to preserve diversity of solutions on the Pareto front, as well as not losing
the good non-dominated solutions during archiving. Sub-figures (b) and (c) show
how an algorithm should result in well-diversified solutions.

• Selecting limited number of non-dominated Pareto front solutions and delivering
them for the decision-maker.

Accordingly, a model MOEA makes use of Pareto domination approaches to
find a set of non-dominated solutions, use external archive or repository to store non-

Multi-objective Particle Swarm Optimization: Theory, Literature … 183

f2

f1

PFcurrent

PFtrue

(a) Solutions converge to the
true Pareto front

f2

f1

(b) Well-diversified
solutions

f2

f1

(c) Crowded solutions

Fig. 2 A description of typical MOEA converges to the optimal true Pareto front. f1 and f2 are
minimization objectives. In a during the search process solutions are guided into optimal Pareto
front, however, it may not be the optimal true Pareto front. b illustrates a well distributed solutions,
whereas c shows how the found solutions are crowded at certain region of the Pareto front

dominated solutions, utilize different techniques as niching for maintaining diversity,
in addition to apply archiving and elitism strategies for speeding up convergence. This
chapter will present an example of multi-objective evolutionary algorithms which is
the multi-objective particle swarm optimization.

4.1 Multi-objective Particle Swarm Optimization (MOPSO)

Particle swarm optimization (PSO) was proposed by Kennedy and Eberhart in 1995
[23]. PSO imitates the swarm social behavior of flocks of birds of school of fishes.
The objective of PSO is to find the optimal solution within the search space of an
objective function, likewise a swarm of birds that search for the best source of food.
In PSO, a set of randomly generated particles search for the best solutions. The
particles search by adjusting their flight directions and velocities [23], using Eqs. 4
and 5, respectively.

xid(t + 1) = xid(t) + vid(t + 1) (4)

vid(t + 1) = w ∗ vid(t) + r1 ∗ c1 ∗ [pid(t) − xid(t)]
+ r2 ∗ c2 ∗ [gd(t) − xid(t)] (5)

where d is the number of dimensions. w is the inertia weight that controls the explo-
ration of a particle, r1 and r2 are random numbers∈ [0, 1], c1 and c2 are acceleration
constants that used to control the effect of personal and global best particles; pid
shows the personal best position for a particle (pbest), and gd indicates the global
best position found by neighbors (gbest).

184 M. Habib et al.

Certainly, PSO shows high-speed convergence ability in single-objective prob-
lems, that is made it desirable choice for MOPs. The design of MOPSO utilizes the
Pareto dominance to generate a set of leaders that control the flight direction of par-
ticles and guide the search process for optimality. Furthermore, it stores the founded
non-dominated solutions in external global memory (called repository), which used
later by particles as global leaders. The global guide is chosen using roulette wheel
selection based on hypercubes’ score. Further, MOPSO adopts a geographically
based strategy in order to maintain diversity of solutions.

Primarily, the external repository “archive” contains two parts—the controller
and the grid. The purpose of the controller is to make decision about new solution
if it should be added to the archive or not; updating or pruning the archive relies
on the dominance relation. However, whenever the archive is full, an adaptive grid
procedure is invoked. In contrast, the grid is used to promote the diversity among
solutions. Essentially, the objective space is divided into regions called hypercubes.
The hypercubes are geographical regions which consist of a number of solutions,
which is created in regard to the objective functions. Each hypercube assigned a
fitness value based on the number of particles it contains. Thus, the hypercubes
with high number of particles have low fitness value. Figure3 shows an example of
hypercubewith crowded number of solutions. The roulette wheel selection technique
is used to select a hypercube; upon selecting a hypercube, a random particle is chosen
from it.Hence, the grid facilitates the process of selecting the solutions that are located
in less populated regions in the objective space than the ones in the crowded areas.

The following steps summarize the process of MOPSO algorithm [12].

1. Initialize the population POPi , where i =[1, 2, …,N]; N is the population size.
2. Initialize the velocity of each particle V ELi .
3. Evaluate each particle and assign it with a fitness value.
4. Store the particles’ positions that represent non-dominated solutions in external

archive (REP).
5. Create hypercubes, and set the particles using the hypercubes as coordinate

system.

Fig. 3 MOPSO hypercubes’
representation, where f1
corresponds to the error rate
and f2 is the number of
features

0.3

0.2

0.1

1 2 3 4 5 f2

f1

0.5

0.4

Crowded
hypercube area

Multi-objective Particle Swarm Optimization: Theory, Literature … 185

6. Initialize the memory of each particle, and store the initial positions as the best
particles’ positions found.

7. Calculate the speed of each particle using Eq.6.
8. Calculate the new positions of each particle using Eq.4.
9. Preserve the particles within the search space constraints’ boundaries.
10. Evaluate the particles.
11. Update the REP and hypercubes by inserting the new non-dominated solutions,

where the dominated solutions removed. However, when the REP is full, the
particles on less crowded region assigned a higher priority.

12. Update the memory of personal best positions of each particle if the current
position is better than the position in its memory using Pareto dominance.

13. If the stopping condition is met, then stop, otherwise go back to step 7.

vid(t + 1) = w ∗ vid(t) + r1 ∗ c1 ∗ (pid(t) − xid(t))

+r2 ∗ c2 ∗ (REP(h) − xid(t))
(6)

In Eq.6, the REP(h) is a non-dominated solution to be selected from the repository,
in which the index h is chosen based on hypercubes’ fitness value.

4.2 Binary MOPSO

Originally, PSO has been designed to deal with continuous variables and real-number
spaces [12, 35]. Handling problems with discrete search space requires transform-
ing the continuous search space into binary search space, such examples with dis-
crete search spaces are the scheduling, routing, feature selection, or dimensionality
reduction [35]. Particle swarm optimization modifies particles’ trajectories based
on changes of previous velocities and positions that influenced by the best global
and local performances. In discrete PSO problems, velocities are used to indicate
the changing of probability that a bit is holding value 0 or 1. In other words, vid
represents the probability that xid is equal to 1.

The binary PSO developed by Kenndy and Eberhart in 1997 [35], which mainly
differs than the classical PSO by using a transfer function (TF) with a different
strategy for updating particles positions. In the binary version, the particles move
in binary search space; therefore, the particle position vector xid is an integer value
in [0, 1], and the particle velocity vector vid is a probability in the interval [0, 1].
Transfer function (TF) is a mathematical model used to convert continuous search
spaces into discrete search spaces [50]. In the original version of binary PSO [35], the
authors used the Sigmoid function as transfer function; however, in [50], the author
suggested other types of transfer functions such as V-shaped and S-shaped transfer
functions for formulating the binary PSO. Taking as an example, the Sigmoid transfer

186 M. Habib et al.

Fig. 4 S1 transfer function

function (S1), which is shown in Eq.7. The function is sharply increased and reached
saturation as the velocity increases, as in Fig. 4.

T (vid(t)) = 1

1 + e−2∗vid (t)
(7)

where vid(t) is subject to the particlei velocity at iteration t and dimension d.
Using the probability value produced from the TF of Eq.7, the position equation will
be updated using Eq.8

xid(t + 1) =
{
1 if rand ≥ T (vid(t))
0 if rand < T (vid(t))

(8)

5 Application of MOPSO in Feature Selection for Medical
Diagnosis

Broadly speaking, having irrelevant and redundant features—considering solving a
classification problem—deteriorates the classification performance, especially with
high-dimensional datasets. Further, having large number of features leads to over-
fitting and results in weak generalization abilities [10]. For example, the analysis of
gene expression data that results from microarray experiments consists of hundreds
or thousands of genes, which makes the classification task based on the significantly
expressed genes a difficult task.

The objective of feature selection is to address this problem by choosing the
relevant features. In single-objective feature selection tasks, the FS has one objec-
tive to be optimized. Single-objective FS aims to find the best classification per-
formance regardless the training cost or the number of features. Multi-objective

Multi-objective Particle Swarm Optimization: Theory, Literature … 187

feature selection (MOFS) handles the FS task by converting it to multi-objective
optimization problem, in which the goal is to deal with the optimization of two
objectives. The objectives are the number of features and the classification per-
formance. As a result, the solution for multi-objective feature selection optimiza-
tion problem is a set of non-dominated solutions, where each solution is a vec-
tor of two components, the number of features and the classification error rate
[10]. Handling the FS problem as a minimization problem, then, the objective is
to minimize the number of features and to minimize the classification error rate
(1 − classi f ication per f ormance (Accuracy)).

5.1 Problem Formulation

Feature selection problem has been handled as multi-objective problem by using
multi-objective particle swarm optimizer. The objectives are to minimize both the
number of features and the classification error rate. Accordingly, the number of fea-
tures of each dataset, independently, represents the problem dimension, with binary
search space in the interval [0, 1]. Since MOPSO is population-based metaheuristic,
the initial population of the swarm corresponds to the potential subsets of features.
In Fig. 1, over the decision space, x1 is a positive real number which represents the
error rate and x2 is also a positive real number which represents the number of fea-
tures, and the function F results in a set of trade-off decision vectors represented
by [F(x1), F(x2)]. For instance, one decision vector might be v1 = [0.001, 12], and
another vector is v2 = [0.05, 5]. v1 is a satisfying solution if the decision-maker
prefers having the lowest error rate regardless the number of features. In contrast, v2
is a satisfying solution for a decision-maker concerns on having the minimum num-
ber of features. Hence, both v1 and v2 are acceptable solutions, but, which objective
to sacrifice returns to the decision-maker preference.

5.1.1 Solution Encoding

Simply, each particle in the swarm represents the selected features by value 1; thus,
each particle is a binary-valued vector, in which each element refers to a feature
in the dataset. Hence, the length of a particle equals the number of features in the
corresponding dataset. Figure5 shows an example of the representation of a particle,
which represents the number of features in the dataset, where the number of features
equals 30. If a feature is selected, then value 1 in the position i denotes that the feature
i is selected, while value 0 denotes that feature i is not selected. Consequently, from
Fig. 5 we notice that the selected subset of features contains the following set of
features { f2, f3, f6, f30}.

The Sigmoid (S1) transfer function is utilized in order to define the probability
for choosing a feature or not choosing it. If the random probability is less than the
value of the transfer function, then the feature is assigned a value zero, otherwise it
assigned one, as illustrated in Eq.8.

188 M. Habib et al.

0 1 1 0 0 1 0 0 0 Text.... 1

f1 f2 f3 f4 f5 f6 f7 f8 f9 f30

Position
(i)

Position
(i+1)

Position
(i+n)

Selected
feature

Not selected
feature

Fig. 5 A particle representation of a sample dataset, where the number of features (n) is equal to
30

5.1.2 Fitness Formulation and Evaluation

The evaluation of the selected subsets of features for MOPSO is carried out using
two main objectives—the classification error rate and the number of features. The
fitness function is formulated as in Eq.9:

Minimize F(x) =
{

f1(x) = l
A , l ∈ A, A ∈ R

+

f2(x) = FP+FN
P+N ∗ 100% , (P + N) ∈ R

+ (9)

l is the selected number of features. A is the overall number of features. P is equal to
TP+FN, and N is equal to FP+TN. The first objective function f1(x) is subject to the
selected features ratio, while the second objective f2(x) corresponds to classification
error rate. FP, FN, TP, and TN are corresponding to false positives, false negatives,
true positives, and true negatives, respectively [31].

The well-known K-nearest neighbor (K-NN) is used to evaluate the performance
of the optimizers with k = 5. Choosing the value of k to be 5 is based on a previous
research study in [54], where the authors compared the performance of particle
swarm optimizer with different k values for K-NN algorithm. The classification error
of 5-NN is determined using fivefold cross-validation, in which the classification
errors were averaged to get the final classification error of each candidate solution.
Certainly, in K-fold cross-validation, the choice of k value is usually 5 or 10; there
is no conventional rule [38]. The datasets are divided into 30% for testing and 70%
for training [11].

The selected subset of features is evaluated on the testing set (30%), using 5-NN,
in order to have the final averaged testing classification error rate. Figure6 illustrates
the overall methodology.

5.2 Datasets’ Description

The used datasets are benchmark datasets available at University of California at
Irvine (UCI)machine learning repository [17]. Two of those datasets are gene expres-

Multi-objective Particle Swarm Optimization: Theory, Literature … 189

Update particle's position and velocity

Evaluate Particles in POP

Update the content of the repository REP

Apply Domination & update particles pbest

Maximum
Iterations
reached?

No

Solution representation and encoding

Initialize the repository REP to store
nondominated solutions

Determine domination of new Rep

Update grid index

Select Rep members & set probabilities

Apply roulette Wheel selection

Choose particle position as leader

Initialize the velocity, position vectors with
random values

Stop

Yes

Data normalization

MOPSO

 set of nondominated
solutions (archive)

Selected feature subset

Final fitness evaluation
(5-NN)

Number of Features,
Error rate, accuracy,
sensitivity, specificity,

gmean

30% 70%

Training dataTesting data

Input dataset

Fig. 6 Methodology design

sion datasets (the Leukemia and Colon cancer datasets) which were taken from two
published papers [8, 30]. All datasets were normalized by usingMin-Max method in
the range from 0 to 1 [31]. Table1 presents a summary of the datasets, the number of
instances, features, classes, and class ratios. Furthermore, a brief description about
the datasets will be presented in the following paragraphs:

Wisconsin breast cancer database (WBCD): WBCD dataset was obtained by
Dr. Wolberg and Mangasarian from the University of Wisconsin Hospital. WBCD
dataset contains 699 breast cancer patient records with nine collected features. It
contains mainly two classes—the benign and malignant. The features are like the
cell’s shape, size, uniformity, and other features as described in [17, 20].

Colon dataset: The Colon cancer dataset is a well-known dataset in the liter-
ature [21, 29]. The deoxyribonucleic acid (DNA) microarray data aids scientists
in identifying functional roles of genes and thus helps in disease characterization
and diagnosis. Cancer tissues have distinctive characteristics of gene expression in
compared to normal tissues. The Colon dataset is gene expression dataset for colon

190 M. Habib et al.

Table 1 Summary of used datasets

Dataset No. of
features

No. of
instances

No.
Classes

Classes ratios (%)

1 WBCD 30 569 2 [62.7, 37.3]

2 Colon cancer 2000 62 2 [64.5, 35.5]

3 Heart 13 270 2 [55.5, 44.4]

4 Leukemia 7129 72 2 [65.3, 34.7]

5 Diabetes 8 768 2 [65.1, 34.9]

6 Acute inflammation 6 120 2 [49.2, 50.8]

7 Hepatitis 10 155 2 [79.4, 20.6]

8 Liver disorders 6 345 2 [58, 42]

9 Parkinson 22 195 2 [24.6, 75.4]

10 Planning- relax 12 182 2 [28.6, 71.4]

11 SPECTF heart 44 267 2 [79.4, 20.6]

12 Vertebral 6 310 2 [32.3, 67.7]

tumor, which contains 40 colon tumor samples and 22 normal colon tissues. By pro-
cessing that data, it resulted into two classes; cancerous or noncancerous, 6200 gene
expression values, and 62 records of data [8].

Heart disease: The dataset is for heart disease diagnoses, collected from Cleve-
land Clinic Foundation, Hungarian Institute of Cardiology, University Hospital of
both Zurich and Basel in Switzerland. The whole database created in two versions—
one with 75 features and the other one is with 14 features. The aim is to predict
the presence or absence of heart disease. The dataset contains 270 patient records
comprising 14 features. The features are mostly related characteristics for blood and
heart, as were described in [17].

Leukemia dataset: The aim of this dataset is leukemia classification using gene
expression data based on DNA microarray. Leukemia is type of cancer that starts in
blood-forming tissues. The dataset contains two output classes—the acute myeloid
leukemia and acute lymphoblastic leukemia. The dataset created from 38 bone mar-
row samples is collected from acute leukemia patients. The ribonucleic acid (RNA) is
extracted from the bone marrow samples and processed through several steps result-
ing in 7129 gene expression values. Hence, the features of the dataset correspond to
the normalized log for (expression level) the all 7129 genes besides 72 records of
data [30].

Diabetes: Diabetes dataset is created by Michael Kahn at Washington University
as participation in a symposium on artificial intelligence in medicine [65]. The data
is collected by automatic electronic recording and paper-based recording, resulting
in 70 set of records and 20 features. A detailed description about the features of the
dataset and its creation is found in [17].

Multi-objective Particle Swarm Optimization: Theory, Literature … 191

Acute inflammation: The dataset aims for the diagnoses of two acute
inflammations—one in the urinary bladder and the other in nephritis. The dataset
contains six features and 120 patient records [17].

Hepatitis: Hepatitis is an inflammation of cells in the liver tissues. The dataset
concerns on predicting the survival of a hepatitis patient. The collected data has 19
features and 155 patient records. The features were illustrated in [17].

Liver disorders: BUPA Liver disorders dataset has been created by BUPA med-
ical research center in 1990. Liver dataset has been employed with diverse machine
learning algorithms for disease diagnosis [32, 39]. It contains 345 patient records
and 7 attributes. The first five attributes related to different blood tests results. The
other features: One is related to the number of alcoholic drinks taken by the patient
per day, and the other feature is the class label that indicates the existence or absence
of liver disorder [17].

Parkinson’s disease: The objective of this dataset is to identify the healthy indi-
viduals from the individuals with Parkinson’s disease, which is done by the detection
of dysphonia (voice disorders). The authors of the dataset have used pitch period
entropy (PPE) as a measurement for dysphonia. The dataset created at the Univer-
sity of Oxford in cooperation with the National Center for Voice and Speech. The
collected voice measurements were from 31 persons, where 23 of them were hav-
ing Parkinson’s disease. In addition, the total dataset contains 195 phonations. The
phonationswere recorded in an IndustrialAcousticsCompany by using amicrophone
located at 8cm from the lips. Each attribute in the dataset corresponds to different
voice measurement as illustrated in [17, 43].

Planning relax: The proposal of this dataset is to understand brain signals, which
further facilitate in controlling prosthetic organs for disabled people. One of the
common tools to monitor brain activity is electroencephalogram (EEG). Research
studies that concerned on brain–computer interfaces proofed that the variations of
power spectra in EEG signal correspond to the detection of an imagination of motor
acts [59]. The authors of this dataset concern on classifying two types of mental
states recorded using EEG, where the states are planning and relax. The planning
state results from an imagination of a motor act. By analyzing the produced patterns
of EEG waves, having a signal with 7–13 hertz, means that the tested person is in
rest state, whereas the signals with frequency higher than 13Hz reflect a planning of
movement state. The dataset collected from healthy, right-handed subjects, in which
EEG data is recorded for five trials of five seconds epoch for each state of relax
and imagining of movement. The features are extracted by applying wavelet packet
analysis on the recorded EEG signals, resulting in 12 features and 182 total number
of records [17].

SPECTF heart: The dataset was gathered at the medical college of Ohio, which
illustrates the diagnosing of cardiac Single-Proton Emission Computed Tomogra-
phy (SPECT) images. SPECT imaging is a tool for diagnosing myocardial perfu-
sion, where the cardiology injects the patient with radioactive tracer and takes two
images—one after 15min (called the stress image) and another one after 5h of injec-
tion and referred to the rest image. The images are two-dimensional (black andwhite)
that represent the left ventricle (LV) muscle perfusion, which is relative to the disper-

192 M. Habib et al.

sion of radioactive counts into the myocardium. The cardiology compares the stress
and rest images in order to identify any abnormalities in the LV muscle perfusion
[40]. The authors applied image analysis and processing techniques to extract key
features, resulting in 44 features and two output classes—normal and abnormal. The
dataset contains 267 SPECT images and clinical patients’ records, such as weight,
height, sex, and the diagnosis [40].

Vertebral: The dataset is collected by Dr. Henrique, with the group of applied
research in orthopedics (GARO) in France. The dataset aims to categorize ortho-
pedic patients into normal or abnormal (which refer to either having disk hernia or
spondylolisthesis). The dataset extracted six biomechanical features from the shape
and direction of the pelvis and lumbar spine [17].

6 Experiments and Results

This section explains the experimental setup, the parameter settings, and the obtained
results.

6.1 Experimental Setup

Initially, the methodology starts by dividing the datasets into 70% for training and
30% for testing. Afterward, MOPSO algorithm produces initial vectors of solutions;
thus, the K-NN starts its training process as explained in Sect. 5.1, which utilizes both
the potential solutions vectors fromMOPSO, and an inner cross-validation criterion.
The best optimal solutions obtained based on K-NN are evaluated on the testing set.
The process repeated iteratively, until the maximum number of iterations of MOPSO
is met.

The investigation of MOPSO as wrapper-based feature selection optimizer
involves the comparison with other multi-objective optimizers—the NSGA-II and
MOEA/D.The evaluation indicators are obtainedby running each algorithm30 times.
Each run includes 100 iterations, the population size (nPop) is 30, and the maximum
archive size is 100. The experiments are conducted by implementing the algorithms
on MATLAB R2010b and running them on 12 benchmark medical datasets that
explained in the previous section. The parameter settings for MOPSO, MOEA/D,
and NSGA-II are as shown in Table 2.

6.2 Evaluation Measures

Evaluating the performance of the experimented algorithms depends on different
performance metrics, in which they are accuracy, sensitivity, specificity, and g-mean.

Multi-objective Particle Swarm Optimization: Theory, Literature … 193

Table 2 Initial settings of the MOEAs

Algorithm Parameter Value

MOPSO Acceleration constants [1.49618, 1.49618]

Inertia weight, inertia damping rate [0.7298, 0.99]

No. of grids per dimension 7

Inflation rate 0.1

Leader selection pressure 2

Deletion selection pressure 2

NSGA-II Crossover probability (CP) 0.9

No. of parents 2*round (CP*nPop/2)

Mutation percentage (MP) 0.4

Mutation rate 1/dimension

No. of mutants round (MP*nPop)

2cmMOEA/D No. of sub-problems nPop

Crossover probability 0.5

Neighbors ratio (T) max (ceil (0.15*nPop), 2)

Accuracy is the fraction of the test set that is correctly classified by the model
classifier [31], as shown in Eq.10.

Accuracy = T P + T N

T P + FP + FN + T N
(10)

Sensitivity measures the percentage of true positives (TP) that are correctly iden-
tified as positives illustrated in Eq.11, [31].

Sensi tivi t y = T P

T P + FN
(11)

Specificity measures the percentage of true negatives (TN) that are correctly iden-
tified as negatives, (Eq. 12) [31].

Speci f ici t y = T N

T N + FP
(12)

G-mean is the geometricmean (Eq.13) that indicates the classification consistency
or central tendency for both normal and abnormal classes, which are defined by using
the square root of the product of both the specificity and the sensitivity [31].

G − mean = √
T PR × T N R (13)

194 M. Habib et al.

6.3 Results

Table3 compares the performance of MOPSO, NSGA-II, and MOEA/D over 12
datasets, using accuracy, sensitivity, specificity, and g-mean. Note that the boldface
numbers show the best results. The results show a significant superiority of MOPSO
over both NSGA-II and MOEA/D in most of the datasets. For instance, regarding to
different measures, in terms of accuracy, MOPSO is better in eight datasets, which
are theWBCD, Colon cancer, Heart, Acute inflammation, Hepatitis, Liver disorders,
Parkinson, and Vertebral, in which MOPSO achieved the highest accuracy 0.919 in
WBCD and Acute inflammation datasets, whereas in terms of g-mean, it is better in
ten datasets, where NSGA-II obtained superior results for Leukemia and Parkinson
datasets achieving (0.835, 0.824), respectively.While in terms of sensitivity,MOPSO
is better in six datasets,MOEA/D is better in 4, andNSGA-II is better in 2. In terms of
sensitivity, MOPSO achieved the best sensitivity value which is 1.000 for Leukemia
dataset; while in contrast, MOEA/D achieved 100% sensitivity for Colon cancer
dataset. Inspecting the specificity results, MOPSO achieved better results in seven
datasets, obtaining 0.987 for Parkinson dataset, whereas NSGA-II performed well
in five of the datasets. Noticeably, the three algorithms have competitive results;
however, MOPSO tends to be superior.

Nonetheless, Fig. 7 shows the average Pareto front of MOPSO, NSGA-II, and
MOEA/D. Each sub-figure describes the set of optimal non-dominated solutions
that found for each dataset, in which the x-axis represents the number of features and
the y-axis represents the error rate. Evidently, NSGA-II achieved better approximate
PF in most of the datasets, holding fewer numbers of features and often lower error
rate values. Yet, MOPSO had better approximate PF in five datasets and retained
competitive number of features and lower error rates values; the datasets are Heart,
Acute inflammation, Hepatitis, Liver disorders, and Vertebral.We notice fluctuations
of the error rate over the number of features forColon,Leukemia, andDiabetes,where
Colon and Leukemia datasets are the gene expression datasets. However, for Colon
dataset, MOPSO obtains lower values of error rate than NSGA-II and MOEA/D. In
Colon and Heart datasets, MOEA/D performs slightly better than NSGA-II at some
points, yet MOPSO performs better. In sub-figures WBCD and Parkinson, at some
points MOPSO achieved slightly better error rate values, but also higher number of
features in compared with both NSGA-II and MOEA/D.

7 Concluding Remarks

This chapter presents an introduction for multi-objective optimization problems and
multi-objective evolutionary optimization, as well as it introduces the use of multi-
objective particle swarm optimization aswrapper-based feature selectionmethod, for
disease detection. A comparison among MOPSO versus NSGA-II and MOEA/D is
performed for examining their performance on 12medical (disease-related) datasets.

Multi-objective Particle Swarm Optimization: Theory, Literature … 195

Ta
bl
e
3

C
om

pa
ri
so
ns

of
ac
cu
ra
cy
,s
en
si
tiv

ity
,s
pe
ci
fic
ity
,a
nd

g-
m
ea
n
am

on
g
M
O
PS

O
,M

O
E
A
/D
,a
nd

N
SG

A
-I
I
fo
r
al
ld

at
as
et
s.
P
-v
al
ue
s
of

W
ilc
ox
on

te
st
of

M
O
PS

O
ag
ai
ns
tN

SG
A
-I
I
an
d
M
O
E
A
/D

ar
e
se
pa
ra
te
d
by

co
m
m
as
.(
P

≥
0.
05

ar
e
w
ri
tte

n
in

ita
lic

ty
pe
fa
ce
)

D
at
as
et

O
pt
im

iz
er

A
cc
ur
ac
y

Se
ns
iti
vi
ty

Sp
ec
ifi
ci
ty

G
-m

ea
n

W
B
C
D

M
O
PS

O
0.
91
9

0.
95
8

0.
86
3

0.
90
9

N
SG

A
-I
I

0.
90
4,

1.
92
E
−0

8
0.
93
1,

6.
08
E
−1

0
0.
85
2,

7.
90
E
−0

3
0.
88
7,

1.
43
E
−0

8

M
O
E
A
/D

0.
90
2,

1.
20
E
−0

5
0.
94
5,

6.
33
E
−0

5
0.
84
2,

3.
03
E
−0

2
0.
89
1,

2.
39
E
−0

4

C
ol
on

ca
nc
er

M
O
PS

O
0.
81
1

0.
81
5

0.
79
8

0.
80
6

N
SG

A
-I
I

0.
55
8,

2.
86
E
−1

1
0.
54
6,

1.
71
E
−1

1
0.
59
4,

3.
99
E
−1

1
0.
56
5,

2.
98
E
−1

1

M
O
E
A
/D

0.
79
6,

2.
51
E
−0

2
1.
00
0,
1.
16
E
−1

2
0.
56
9,

1.
20
E
−1

2
0.
75
3,

2.
84
E
−0

6

H
ea
rt

M
O
PS

O
0.
79
5

0.
91
5

0.
66
5

0.
77
1

N
SG

A
-I
I

0.
75
7,

7.
29
E
−0

7
0.
74
5,

8.
85
E
−1

1
0.
78
5,
6.
61
E
−1

1
0.
76
3,
6.
35
E
−0

2

M
O
E
A
/D

0.
76
0,

2.
83
E
−0

4
0.
79
8,

1.
82
E
−0

9
0.
70
5,

3.
80
E
−0

3
0.
73
0,

4.
60
E
−0

3

L
eu
ke
m
ia

M
O
PS

O
0.
82
5

1.
00
0

0.
64
9

0.
80
5

N
SG

A
-I
I

0.
89
2,
2.
58
E
−1

1
0.
97
5,

3.
41
E
−0

7
0.
71
4,
1.
14
E
−1

2
0.
83
5,
1.
03
E
−0

9

M
O
E
A
/D

0.
84
4,

4.
89
E
−0

2
0.
94
5,

1.
76
E
−1

1
0.
62
6,
7.
23
E
−0

2
0.
76
8,

1.
03
E
−0

2

D
ia
be
te
s

M
O
PS

O
0.
70
8

0.
82
0

0.
50
3

0.
64
2

N
SG

A
-I
I

0.
71
9,
7.
51
E
−0

6
0.
84
0,
1.
77
E
−1

1
0.
47
1,

4.
26
E
−0

8
0.
62
7,

9.
46
E
−0

6

M
O
E
A
/D

0.
67
2,

2.
43
E
−0

9
0.
80
2,

4.
64
E
−0

4
0.
43
0,

8.
32
E
−1

0
0.
58
4,

2.
66
E
−1

0

A
cu
te
in
fla

m
m
at
io
n

M
O
PS

O
0.
91
9

0.
95
4

0.
89
2

0.
91
7

N
SG

A
-I
I

0.
88
0,

6.
12
E
−1

4
0.
81
5,

6.
12
E
−1

4
0.
94
4,
1.
22
E
−1

2
0.
87
5,

6.
12
E
−1

4

M
O
E
A
/D

0.
81
8,

3.
01
E
−1

2
0.
98
4,
6.
11
E
−0

7
0.
71
2,

2.
02
E
−0

7
0.
79
9,

3.
02
E
−1

2

(c
on
tin

ue
d)

196 M. Habib et al.

Ta
bl
e
3

(c
on
tin

ue
d)

D
at
as
et

O
pt
im

iz
er

A
cc
ur
ac
y

Se
ns
iti
vi
ty

Sp
ec
ifi
ci
ty

G
-m

ea
n

H
ep
at
iti
s

M
O
PS

O
0.
86
3

0.
92
9

0.
41
6

0.
60
9

N
SG

A
-I
I

0.
79
6,

2.
24
E
−1

1
0.
95
4,
7.
23
E
−1

1
0.
28
2,

1.
05
E
−1

1
0.
51
8,

9.
41
E
−1

1

M
O
E
A
/D

0.
78
9,

5.
57
E
−1

1
0.
92
6,
6.
62
E
−0

1
0.
34
2,

2.
01
E
−0

4
0.
53
4,

1.
30
E
−0

3

L
iv
er

di
so
rd
er
s

M
O
PS

O
0.
62
0

0.
67
1

0.
52
7

0.
59
3

N
SG

A
-I
I

0.
53
4,

2.
18
E
−1

1
0.
64
9,

1.
47
E
−0

4
0.
39
0,

2.
39
E
−1

1
0.
49
7,

2.
75
E
−1

1

M
O
E
A
/D

0.
57
1,

2.
15
E
−0

8
0.
62
3,

2.
08
E
−0

5
0.
48
0,

2.
65
E
−0

5
0.
54
5,

1.
51
E
−0

8

Pa
rk
in
so
n

M
O
PS

O
0.
89
0

0.
57
7

0.
98
7

0.
75
2

N
SG

A
-I
I

0.
88
1,

1.
68
E
−0

4
0.
71
4,

3.
92
E
−1

1
0.
95
4,

2.
47
E
−1

1
0.
82
4,
3.
57
E
−1

1

M
O
E
A
/D

0.
87
9,

4.
34
E
−0

2
0.
71
5,
2.
25
E
−1

0
0.
90
8,

2.
78
E
−1

1
0.
80
1,

3.
09
E
−0

6

Pl
an
ni
ng

re
la
x

M
O
PS

O
0.
63
4

0.
23
5

0.
75
8

0.
40
7

N
SG

A
-I
I

0.
65
2,
1.
39
E
−0

2
0.
05
8,

3.
75
E
−1

1
0.
89
6,
4.
33
E
−0

9
0.
14
0,

5.
91
E
−1

1

M
O
E
A
/D

0.
59
6,

8.
40
E
−0

7
0.
07
3,

1.
52
E
−1

1
0.
89
4,

3.
01
E
−1

1
0.
22
2,

1.
41
E
−1

0

SP
E
C
T
F
he
ar
t

M
O
PS

O
0.
77
5

0.
40
6

0.
83
9

0.
57
3

N
SG

A
-I
I

0.
79
6,
1.
27
E
−0

4
0.
20
5,

4.
77
E
−1

1
0.
91
9,
3.
63
E
−1

1
0.
41
2,

8.
15
E
−1

1

M
O
E
A
/D

0.
72
8,

1.
25
E
−0

8
0.
22
3,

5.
33
E
−1

0
0.
90
5,

4.
46
E
−0

9
0.
43
1,

2.
02
E
−0

8

V
er
te
br
al

M
O
PS

O
0.
81
7

0.
72
6

0.
86
3

0.
79
1

N
SG

A
-I
I

0.
79
6,

1.
69
E
−1

4
0.
69
9,

2.
71
E
−1

4
0.
84
4,

2.
71
E
−1

4
0.
76
8,

2.
71
E
−1

4

M
O
E
A
/D

0.
77
0,

1.
00
E
−1

2
0.
80
0,
2.
09
E
−0

7
0.
75
9,

1.
49
E
−1

2
0.
77
6,
3.
50
E
−0

1

Multi-objective Particle Swarm Optimization: Theory, Literature … 197

(a) (b)

(c)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

(d)

Fig. 7 Comparison of MOPSO, NSGA-II, and MOEA/D over all datasets

198 M. Habib et al.

MOPSO as wrapper-based feature selection approach showed often superior perfor-
mance in compared to other MOEAs. Hence, MOPSO has merits to be considered
for feature selection techniques in medical applications. Since we maintained the
multi-objective formulation, further there should be another step for decision mak-
ing. However, the aim of developing smart techniques that aid in the diagnosis or in
the clinical decision support systems is not to replace the clinician or the therapist,
but to assist them in taking more efficient and reliable decisions.

References

1. Abbass HA (2002) An evolutionary artificial neural networks approach for breast cancer diag-
nosis. Artif Intell Med 25(3):265–281

2. Ahmed S, Mafarja M, Faris H, Aljarah I (2018) Feature selection using salp swarm algo-
rithm with chaos. In: Proceedings of the 2nd international conference on intelligent systems,
metaheuristics & swarm intelligence. ACM, pp 65–69

3. Aljarah I, Al-Zoubi AM, Faris H, Hassonah MA, Mirjalili S, Saadeh H (2018) Simultaneous
feature selection and support vector machine optimization using the grasshopper optimization
algorithm. Cogn Comput 1–18

4. Aljarah I, Faris H,Mirjalili S, Al-Madi N, ShetaA,MafarjaM (2019) Evolving neural networks
using bird swarm algorithm for data classification and regression applications. Clust Comput
1–29

5. Aljarah I, Ludwig SA (2013) Towards a scalable intrusion detection system based on parallel
pso clustering using mapreduce. In: Proceedings of the 15th annual conference companion on
Genetic and evolutionary computation. ACM, pp 169–170

6. Aljarah I, Mafarja M, Heidari AA, Faris H, Zhang Y, Mirjalili S (2018) Asynchronous accel-
erating multi-leader salp chains for feature selection. Appl Soft Comput 71:964–979

7. Alnemer LM,RajabL,Aljarah I (2016)Conformal prediction technique to predict breast cancer
survivability. Int J Adv Sci Technol 96:1–10

8. Alon U, Barkai N, Notterman DA, Gish K, Ybarra S,Mack D, Levine AJ (1999) Broad patterns
of gene expression revealed by clustering analysis of tumor and normal colon tissues probed
by oligonucleotide arrays. Proc Natl Acad Sci 96(12):6745–6750

9. Berner ES (2007) Clinical decision support systems, vol 233. Springer
10. Blum AL, Langley P (1997) Selection of relevant features and examples in machine learning.

Artif Intell 97(1–2):245–271
11. Bramer M (2007) Principles of data mining, vol 180. Springer
12. Coello CAC, Lechuga MS (2002) Mopso: a proposal for multiple objective particle swarm

optimization. In: Proceedings of the 2002 congress on evolutionary computation. CEC’02
(Cat. No. 02TH8600), vol 2. pp 1051–1056, IEEE

13. Coello CA, Lamont GB, Van Veldhuizen DA et al (2007) Evolutionary algorithms for solving
multi-objective problems, vol 5. Springer

14. Corne DW, Knowles JD, Oates MJ (2000) The pareto envelope-based selection algorithm for
multiobjective optimization. In: International conference on parallel problem solving from
nature. Springer, pp 839–848

15. Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic
algorithm for multi-objective optimization: Nsga-ii. In: International conference on parallel
problem solving from nature. Springer, pp 849–858

16. Deb K, Kalyanmoy D (2001) Multi-objective optimization using evolutionary algorithms.
Wiley, New York, NY, USA

17. Dua D, Efi KT (2017) UCI machine learning repository

Multi-objective Particle Swarm Optimization: Theory, Literature … 199

18. Dioşan L, Andreica A (2015) Multi-objective breast cancer classification by using multi-
expression programming. Appl Intell 43(3):499–511

19. Dos Santos BC, Nobre CN, Zárate LE (2018) Multi-objective genetic algorithm for feature
selection in a protein function prediction context. In: 2018 IEEE congress on evolutionary
computation (CEC). IEEE, pp 1–6

20. Dubey AK, Gupta U, Jain S (2016) Analysis of k-means clustering approach on the breast
cancer wisconsin dataset. Int J Comput Assist Radiol Surg 11(11):2033–2047

21. Dudoit S, Fridlyand J, Speed TP (2002) Comparison of discrimination methods for the classi-
fication of tumors using gene expression data. J Am Stat Assoc 97(457):77–87

22. Dussaut JS, Vidal PJ, Ponzoni I, Olivera AC (2018) Comparing multiobjective evolutionary
algorithms for cancer datamicroarray feature selection. In: 2018 IEEEcongress on evolutionary
computation (CEC). IEEE, pp 1–8

23. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Micro machine
and human science, 1995. MHS’95. Proceedings of the Sixth International Symposium on.
IEEE, pp 39–43

24. Faris H, Aljarah I, Al-Betar MA, Mirjalili S (2018) Grey wolf optimizer: a review of recent
variants and applications. Neural Comput Appl, pp 1–23

25. Faris H,Aljarah I, Al-Shboul B (2016)A hybrid approach based on particle swarm optimization
and random forests for e-mail spam filtering. In: International Conference on Computational
Collective Intelligence. Springer, pp 498–508

26. Faris H, Hassonah MA, Al-Zoubi AM, Mirjalili S, Aljarah I (2018) A multi-verse optimizer
approach for feature selection and optimizing svm parameters based on a robust system archi-
tecture. Neural Comput Appl 30(8):2355–2369

27. Faris H, Mafarja MM, Heidari AA, Aljarah I, Al-Zoubi AM, Mirjalili S, Fujita H (2018) An
efficient binary salp swarm algorithm with crossover scheme for feature selection problems.
Knowl-Based Syst 154:43–67

28. Faris H, Mirjalili S, Aljarah I (2019) Automatic selection of hidden neurons and weights in
neural networks using grey wolf optimizer based on a hybrid encoding scheme. Int J Mach
Learn Cybern 1–20

29. Friedman N, Linial M, Nachman I, Pe’Er D (2000) Using bayesian networks to analyze expres-
sion data. J Comput Biol 7(3–4):601–620

30. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML,
Downing JR, Caligiuri MA et al (1999) Molecular classification of cancer: class discovery and
class prediction by gene expression monitoring. Science 286(5439):531–537

31. Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier
32. HaqueMR, IslamMM, IqbalH,RezaMS,HasanMK(2018) Performance evaluation of random

forests and artificial neural networks for the classification of liver disorder. In: 2018 interna-
tional conference on computer, communication, chemical, material and electronic engineering
(IC4ME2). IEEE pp 1–5

33. Holland JH et al (1992) Adaptation in natural and artificial systems: an introductory analysis
with applications to biology, control, and artificial intelligence. MIT press

34. Ibrahim AO, Shamsuddin SM, Saleh AY, Abdelmaboud A, Ali A (2015) Intelligent multi-
objective classifier for breast cancer diagnosis based on multilayer perceptron neural network
and differential evolution. In: 2015 international conference on computing, control, networking,
electronics and embedded systems engineering (ICCNEEE). IEEE pp 422–427

35. Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm.
In: 1997 IEEE international conference on systems, man, and cybernetics. Computational
cybernetics and simulation, vol 5. IEEE pp 4104–4108

36. Knowles J, Corne D (1999) The pareto archived evolution strategy: a new baseline algorithm
for pareto multiobjective optimisation. In: Congress on Evolutionary Computation (CEC99),
vol 1, pp 98–105

37. Kong Q, Wang D, Wang Y, Jin Y, Jiang B (2018) Multi-objective neural network-based diag-
nostic model of prostatic cancer. Xitong Gongcheng Lilun Yu Shijian/Syst Eng Theory Pract
38(2):532–544. cited By 0

200 M. Habib et al.

38. Kuhn M, Johnson K (2013) Applied predictive modeling, vol 26. Springer
39. Kumar S, Katyal S (2018) Effective analysis and diagnosis of liver disorder by data mining.

In: 2018 international conference on inventive research in computing applications (ICIRCA).
IEEE pp 1047–1051

40. Kurgan LA, Cios KJ, Tadeusiewicz R, Ogiela M, Goodenday LS (2001) Knowledge discovery
approach to automated cardiac spect diagnosis. Artif Intell Med 23(2):149–169

41. Kursawe F (1990) A variant of evolution strategies for vector optimization. In: International
conference on parallel problem solving from nature. Springer, pp 193–197

42. LiX,YinM(2013)Multiobjective binary biogeographybasedoptimization for feature selection
using gene expression data. IEEE Trans NanoBioscience 12(4):343–353

43. Little MA, McSharry PE, Hunter EJ, Spielman J, Ramig LO (2009) Suitability of dysphonia
measurements for telemonitoring of parkinson’s disease. IEEE Trans Bio-Med Eng 56(4):1015

44. Mafarja M, Aljarah I, Faris H, Hammouri AI, Al-Zoubi AM, Mirjalili S (2019) Binary
grasshopper optimisation algorithm approaches for feature selection problems. Expert Syst
Appl 117:267–286

45. Mafarja M, Aljarah I, Heidari AA, Faris H, Fournier-Viger P, Li X, Mirjalili S (2018) Binary
dragonfly optimization for feature selection using time-varying transfer functions. Knowl-
Based Syst 161:185–204

46. MafarjaM,Aljarah I, Heidari AA,HammouriAI, FarisH,A-ZoubiAM,Mirjalili S (2018) Evo-
lutionary population dynamics and grasshopper optimization approaches for feature selection
problems. Knowl-Based Syst 145:25–45

47. Mafarja M, Heidari AA, Faris H, Mirjalili S, Aljarah I (2020) Dragonfly algorithm: theory,
literature review, and application in feature selection. In: Nature-inspired optimizers. Springer,
pp 47–67

48. Mafarja MM, Mirjalili S (2018) Hybrid binary ant lion optimizer with rough set and approxi-
mate entropy reducts for feature selection. Soft Comput 1–17

49. Mirjalili S, Jangir P, Saremi S (2017) Multi-objective ant lion optimizer: a multi-objective
optimization algorithm for solving engineering problems. Appl Intell 46(1):79–95

50. Mirjalili S, Lewis A (2013) S-shaped versus v-shaped transfer functions for binary particle
swarm optimization. Swarm Evol Comput 9:1–14

51. Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-objective grey wolf optimizer:
a novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119

52. Mirjalili SZ,Mirjalili S, SaremiS, FarisH,Aljarah I (2018)Grasshopper optimization algorithm
for multi-objective optimization problems. Appl Intell 48(4):805–820

53. Mitra S, Banka H (2006) Multi-objective evolutionary biclustering of gene expression data.
Pattern Recognit 39(12):2464–2477

54. Mohemmed AW, Zhang M (2008) Evaluation of particle swarm optimization based centroid
classifier with different distance metrics. In: 2008 IEEE congress on evolutionary computation
(IEEE world congress on computational intelligence). IEEE, pp 2929–2932

55. Mugambi EM, Hunter A (2003) Multi-objective genetic programming optimization of deci-
sion trees for classifying medical data. In: International conference on knowledge-based and
intelligent information and engineering systems. Springer, pp 293–299

56. Murata T, Ishibuchi H (1995) Moga: multi-objective genetic algorithms. IEEE Int Conf Evol
Comput 1:289–294

57. rey Horn J, Nafpliotis N, Goldberg DE (1994) A niched pareto genetic algorithm for multiob-
jective optimization. In: Proceedings of the first IEEE conference on evolutionary computation,
IEEE world congress on computational intelligence, vol 1. Citeseer, pp 82–87

58. Sahoo A, Chandra S (2017) Multi-objective grey wolf optimizer for improved cervix lesion
classification. Appl Soft Comput 52:64–80

59. Santhosh J, Bhatia M, Sahu S, Anand S (2004) Quantitative eeg analysis for assessment to
plana task in amyotrophic lateral sclerosis patients: a study of executive functions (planning)
in als patients. Cogn Brain Res 22(1):59–66

60. Schaffer JD (1985) Multiple objective optimization with vector evaluated genetic algorithms.
In: Proceedings of the first international conference on genetic algorithms and their applications
(1985) Lawrence Erlbaum Associates. Publishers, Inc., p 1985

Multi-objective Particle Swarm Optimization: Theory, Literature … 201

61. Shahbeig S, Rahideh A, HelfroushMS, Kazemi K (2018) Gene selection from large-scale gene
expression data based on fuzzy interactive multi-objective binary optimization for medical
diagnosis. Biocybern Biomed Eng 38(2):313–328

62. Sarah S, Hossam F, Ibrahim A, Seyedali M, Ajith A (2018) Evolutionary static and dynamic
clustering algorithms based on multi-verse optimizer. Eng Appl Artif Intell 72:54–66

63. Sohrabi MK, Tajik A (2017) Multi-objective feature selection for warfarin dose prediction.
Comput Biol Chem 69:126–133

64. Srinivas N, Deb K (1994) Muiltiobjective optimization using nondominated sorting in genetic
algorithms. Evol Comput 2(3):221–248

65. Turing AM, Lerner A, (1987) Aaai 1991 spring symposium series reports. 12(4): Winter 1991,
31–37 aaai 1993 fall symposium reports. 15(1): Spring, (1994) 14–17 aaai 1994 spring sym-
posium series. Intelligence 1(49):8

66. Yang X-S (2010) Nature-inspired metaheuristic algorithms. Luniver press
67. ZhangQ,LiH (2007)Moea/d: amultiobjective evolutionary algorithmbasedondecomposition.

IEEE Trans Evol Comput 11(6):712–731

Multi-objective Particle Swarm
Optimization for Botnet Detection
in Internet of Things

Maria Habib, Ibrahim Aljarah, Hossam Faris and Seyedali Mirjalili

Abstract Nowadays, the world witnesses an immense growth in Internet of things
devices. Such devices are found in smart homes, wearable devices, retail, health
care, industry, and transportation. As we are entering Internet of things (IoT) digital
era, IoT devices not only hack our world, but also start to hack our personal life.
The widespread IoT has created a rich platform for potential IoT cyberattacks. Data
mining and machine learning techniques have significant roles in the field of IoT
botnet detection. The aim of this chapter is to develop detection model based on
multi-objective particle swarm optimization (MOPSO) for identifying the malicious
behaviors in IoT network traffic. The performance of MOPSO is verified against
multi-objective non-dominating sorting genetic algorithm (NSGA-II), common tra-
ditional machine learning algorithms, and some conventional filter-based feature
selection methods. As per the obtained results, MOPSO is competitive and outper-
forms NSGA-II, traditional machine learning methods, and filter-based methods in
most of the studied datasets.

Keywords Internet of things · Classification · Multi-objective particle swarm
optimization · Non-dominating sorting genetic algorithm · Multi-objective feature
selection · Botnets

M. Habib · I. Aljarah · H. Faris
King Abdullah II School for Information Technology,
The University of Jordan, Amman, Jordan

I. Aljarah
e-mail: i.aljarah@ju.edu.jo

H. Faris
e-mail: hossam.faris@ju.edu.jo

S. Mirjalili (B)
Torrens University Australia,
Brisbane, QLD 4006, Australia
e-mail: ali.mirjalili@gmail.com

Griffith University, Brisbane, QLD 4111, Australia

© Springer Nature Singapore Pte Ltd. 2020
S. Mirjalili et al. (eds.), Evolutionary Machine Learning Techniques,
Algorithms for Intelligent Systems, https://doi.org/10.1007/978-981-32-9990-0_10

203

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-32-9990-0_10&domain=pdf
mailto:i.aljarah@ju.edu.jo
mailto:hossam.faris@ju.edu.jo
mailto:ali.mirjalili@gmail.com
https://doi.org/10.1007/978-981-32-9990-0_10

204 M. Habib et al.

1 Introduction and Related Works

In recent years, there has been a rapid increase in IoT devices. These devices are
physical, electronic objects, or even embedded systems that are connected to Inter-
net and can be connected together without human intervention [55]. IoT networks
have a strong connection with individuals’ daily life in organizations, governmental
agencies, or homes. Massachusetts Institute of Technology defines the terminology
of IoT as a network of all connected devices (or things) in order to share information
and enhance the sensing, communication, and computational abilities [55]. From
another perspective, IoT can be defined as a network of electronic devices communi-
cates together viawireless technologies, so they exchange data, process it, and store it
[14]. Despite the high proliferation of IoT, like any other Internet-connected devices,
IoT is susceptible to wide range of network and software security breaches [14].
Since IoT is equipped with low computational power in memory, battery, processing
unit, and streaming bandwidth, protecting IoT systems is considered a challenging
task. IoT is not just vulnerable to security issues as other Internet networks, mobile
networks, or wireless sensor networks. But it is more exposed to several security
issues since it is highly heterogeneous within interconnected networks as well as
highly scalable [29].

Privacy and security are two major concerns when using IoT devices these days.
IoT devices are plug-and-play devices, which means that they are highly suscep-
tible to brute-force attacks and denial-of-service (DoS) attacks [14]. As many IoT
devices have default passwords by their manufacturing settings, this makes them an
attractable target for botnets or IoT malware [14].

IoT encompasses threemain layers—the perception layer, the transportation layer,
and the application layer. As each layer has different protocols, then each is exposed
to diverse security issues [29]. Taking in particular the transportation layer in which
IoT communicates over various technologies, it could be Bluetooth, Wi-Fi, Zigbee,
and 3G networks. Thus, the communication layer is vulnerable to denial-of-service
(DoS) or distributed denial-of-service (DDoS) attacks, middle and forgery attacks,
and the risk of IPv6 and 6LoWPAN application protocols [29]. It has been observed
in 2016 that a large-scale DDoS attack using Mirai botnet targeted the domain name
service provider Dyn, which resulted in disrupting large number of services like
CNN, PayPal, and Netflix.

Intrusion detection systems (IDSs) are one of the solutions proposed to protect
networks frompotential threats and intrusions. IDSs are software or hardware devices
that continuously monitor the network in order to capture malicious behaviors or
patterns [18]. IDSs involve three major modules—the sensor module that collects
data from the environment, the analysis module, and the reporting module [18]. We
focus on the analysis module which is responsible about processing massive amount
of traffic data in order to extract abnormal patterns ormalicious behaviors. Therefore,
the analysis module is a smart module that deploys data science and data mining
techniques so as to protect the corresponding network. Accordingly, developing a
lightweight security solution for IoT is at significant requirement.

Multi-objective Particle Swarm Optimization for Botnet Detection in Internet of Things 205

IoT networks involve large number of devices which result in large amount of
data with high dimensions. Processing such large amount of data requires the utiliza-
tion of specialized mining techniques to handle it. One of the crucial steps of data
preprocessing is the feature selection process.

Considering a dataset with N number of features, it has a search space of 2N .
Having redundant and irrelevant features in a classification task may deteriorate the
classification performance especially in a large-scale dataset. Feature selection (FS)
aims to tackle this problem by choosing the relevant features, hence, minimizing
the number of features, minimizing the classifier training time, and maximizing the
classification performance. Since the size of the search space is highly affected by
the number of features, the process of finding the optimal set of features is considered
to be an exhaustive task [57]. Several search techniques have been proposed in the
literature, such as greedy search [12], sequential search [12], and tabu search [59].
However, these traditional search methods suffer from trapping in local optima [57].
On the other hand, nature-inspired optimizers are popular for their global search
capability and the successful ability to handle feature selection problem [1, 3, 6, 22,
23, 36–40].

In the literature, there is a tendency towardmachine learningmethods for address-
ing the problem of attack detection or botnet detection in IoT. In [48], for instance, the
authors used neural network (NN) for intrusion detection in IoT, in which they uti-
lized the negative selection algorithm to construct a new training set and predict new
unseen intrusions. Although they reduced the computational complexity by doing
the training phase remotely, the designed algorithm showed a limited performance
in the intrusion detection process [48].

In [42], the authors deployed Naive Bayes (NB) classification algorithm with a
multi-agent system for detectingdistributeddenial-of-service attacks.Xiao andLiang
in [56] stated how the use of artificial intelligence techniques enhances the security
of IoT devices. As a result, they classified state-of-the-art studies into studies that
used supervisedmachine learning (ML) techniques (or some other used unsupervised
ML techniques) or the use of reinforcement learning methods. Other methods used
in the literature are random forest (RF), gradient boosting (GB), and NB to detect
malicious activities, such as scanning and DoS attacks. However, NB performed the
worst among RF and GB in terms of recall and precision [53].

In [35], the authors used suppressed fuzzy clustering and principal component
analysis (PCA) for IoT intrusion detection. The results were promising, but they
deteriorate with the increase of data volume in terms of detection efficiency. In
[34], the authors combined a RF classifier with the Bat algorithm (BA) for feature
selection in an attempt to detect intrusions in IoT networks. The results were superior
compared to different algorithms such as support vector machine (SVM), AdaBoost,
and decision tree (DT). However, they aim to test the proposed approach on real IoT
network traffic. Another relevant work was conducted in [50], in which the authors
used an extreme learning machine-based semi-supervised fuzzy C-means clustering
for detecting network-level attacks in IoT.The proposedmethodology achieved better
accuracy than traditional machine learning algorithms. In [47], the authors developed
AdaBoost ensemble learning method using DT, NB, and artificial neural network

206 M. Habib et al.

(ANN) for intrusion detection in IoT. The proposed algorithm outperformed SVM,
Markov chain (MC), and Bayesian system based on detection rate, accuracy, and
processing time. However, the proposed algorithm designed to detect specifically
three types of attacks depending on simulated IoT data.

Hard optimization problems cannot be solved using traditional algorithms in deter-
ministic polynomial time since the required time to solve them increases exponen-
tially with the growing size of the problem [15].

Optimization algorithms can be categorized based on the search strategy into
deterministic algorithms or stochastic algorithms [58]. The deterministic algorithms
use repetitive process for the values assignment of variables and functions. Thus,
as they start from the same starting point, they always produce the same output
results [15]. Stochastic algorithms utilize a randomization component, where a typi-
cal example is the evolutionary algorithms. Stochastic algorithms might be heuristic
or metaheuristic, where heuristic means searching for solutions by trial and error,
whereas meta is a Greek prefix, means higher level or beyond. Metaheuristic can
solve hard optimization problems and can find good solutions in deterministic, rea-
sonable amount of time as they can balance between exploration (searching at global
level) and exploitation (searching at local level). However, there is no guarantee that
the good found solutions are optimal solutions [58].

Generally,metaheuristic algorithms are nature-inspired algorithms that consist the
evolutionary algorithms and the swarm-based algorithms [58]. Swarm-based algo-
rithms concern on the behavior of a collection of interacting agents in a population
that imitates natural systems behaviors, such as the social behavior of ants, bees,
insects or birds flocking, and fish schooling [58].

To the best of our knowledge, there is little in the literature on the use of evolu-
tionary algorithms or even evolutionary multi-objective algorithms for attack detec-
tion in the field of IoT. In [49], authors proposed a biometric authentication tech-
nique based on genetic algorithms in order to prevent black-hole attacks in IoT
networks, whereas authors in [32] utilized single-objective ant colony optimization
to detect Sybil attacks in social IoT networks. As well as, in [4, 5, 30, 52], particle
swarm optimization algorithm is integrated for attack detection and secure authen-
tication in cloud computing-related networks. Nonetheless, [54] utilized artificial
bee colony algorithm for detecting extensible markup language denial-of-service
attacks over clouds’ architectures. While in [51], the authors used Voronoi diagram-
based evolutionary algorithm (VorEAl) for intrusion detection in IoT, and VorEAl
evolves Voronoi diagrams which were utilized to do the classification of data. More-
over, VorEAl applied amulti-objective optimization principle. Despite the promising
results, they aimed to construct a dataset that is more close to a real IoT traffic.

In this chapter, we first formulate the IoT botnet detection as a multi-objective
optimization problem for feature selection for IoT traffic classification. FS has mul-
tiple objectives by nature, herein; it is handled as a two-objective optimization prob-
lem. The first objective is maximizing the classification performance by reducing
the classification error rate. The second objective is minimizing the selected num-
ber of features. Therefore, MOPSO algorithm is utilized as wrapper-based feature
selectionmethod. Additionally, theMOPSO algorithm is used to find the Pareto opti-

Multi-objective Particle Swarm Optimization for Botnet Detection in Internet of Things 207

mal front of this problem. MOPSO is compared with NSGA-II and several machine
learning algorithms. Furthermore, the MOPSO, as wrapper-based feature selection,
is compared with different filter-based techniques.

The rest of the chapter is organized as follows: Sect. 2 presents a background about
IoT botnets,MOPSO, non-dominating sorting genetic algorithm, andmulti-objective
feature selection. Section3 discusses the creation of datasets, binary multi-objective
particle swarm optimization, and the designed experiments. Section4 shows the
experimental evaluation and results. Finally, Sect. 5 summarizes the work and sug-
gests possible future work.

2 Internet of Things Botnets

The existence of large number of connected devices with limited computational
and technical capabilities leads to having highly vulnerable IoT networks. Gener-
ally speaking, IoT devices go through three main operations—data collection, data
transmission, and data processing. In each of these operations, such devices are vul-
nerable to different types of attacks. Besides, the low computational resources of IoT
made these devices relatively easier to be flooded, especially for the attackers whom
orchestrate DDoS attacks.

DDoS attacks seek to overwhelm IoT resources like the memory, central pro-
cessing unit (CPU), and bandwidth [7]. Often, DDoS is conducted using TCP, UDP,
or HTTP flooding attacks, which results in stopping server’s services or dropping
legitimate requests sent from end users [7]. DDoS attacks are launched from botnets
which are group of connected network devices infected with a malware and called
bots. Bots might be IoT devices like cameras, thermostat, and so on; they execute
several tasks like scanning the network for vulnerable devices, send spam messages,
infect vulnerable devices, and carry out several types of attacks [19–21, 41]. Nowa-
days, IoT devices form an attracting platform for performing extensiveDDoS attacks.
As a result, different IoTmalwares have emerged triggering large-scaleDDoS attacks
that surpassed 1.2 terabit per second (Tbps) [41].

Bashlite andMirai are two kinds of botnets intended for IoT devices. Bashlite (also
known asGafgyt, Torlus, and Lizkebab) is a commonmalware targeting Linux-based
IoT devices with the aim of launching DDoS attacks. DDoS attacks often conducted
by performing TCP or UDP floods. Bashlite infects IoT appliances by brute-force
its authentication credentials using the telnet port. In 2015, Bashlite’s source code
has been revealed, which led to the evolution of different variants [7].

Mirai is a malware which infects IoT devices, same as Bashlite in order to perform
DDoS attacks. Originally, Mirai’s source code is based on Bashlite’s. Mirai has a
large attack size; it had infected up to 65,000 devices in its first 20 hours. It has been
identified that Mirai had been targeting digital video recorders (DVRs), IP cameras,
routers, and webcams [8]. Mainly, Mirai works by first scanning a potential victim
network by sending TCP-SYN floods to IPv4 addresses on telnet ports 23 or 2323.
Once a vulnerable device detected, it starts brute-forcing its credentials. Upon having

208 M. Habib et al.

Fig. 1 Botnet attack model
for IoT

Sniffer
C&C

Server

Scanner
& Loader

successful credentials, the loader login to the device and infects it with the malware.
The created botmaster listens to the command and controller server (C&C) and keeps
searching for other victim devices [31]. Figure1 illustrates how such botnet might
infect a network of IoT devices.

3 Botnet Detection Model Based on MOPSO

Originally, the intrusions’ objective is to deplete network’s resources and services,
which results in damaging the integrity, confidentiality, and validity of the target
network’s data and functionality [28]. Intrusion detection systems are software or
hardware devices that iteratively monitor the network traffic in order to detect mali-
cious activities or intrusions [28]. Generally, IDSs are classified into signature-based
systems or anomaly-based systems. Signature-based systems recognize previously
defined attacks by identifying patterns that matching the signatures of the known
attacks. However, its main drawback is the inability to identify and mitigate zero-day
threats, whereas anomaly-based systems monitor the network behavior and classify
it to normal or abnormal, by utilizing either statistical-based techniques, knowledge-
based techniques, or machine learning techniques [25]. Anomaly-based IDSs are
well known for their ability to identify unforeseen attacks [28]. This chapter exam-
ines the use of multi-objective particle swarm optimization as a detection algorithm

Multi-objective Particle Swarm Optimization for Botnet Detection in Internet of Things 209

Wifi

Z-wave

Zigbee

Public Internet

Smart Anomaly-based
IDS

Fig. 2 Illustration of deploying machine learning-based intrusion detection system over IoT net-
works

for such anomaly-based intrusion detection system for IoT. Figure2 illustrates the
process of deploying smart algorithms (as in our case the MOPSO) for intrusion
detection for IoT networks.

3.1 Multi-objective Particle Swarm Optimization

In 1995, Kennedy and Eberhart proposed particle swarm optimization (PSO) algo-
rithm that mimics the swarm social behavior of bird flocks and fish schooling. PSO
is a stochastic search algorithm aims to find the optimal solution within the search
space of an objective function, likewise a swarm of birds that searches for the best
source of food. In PSO, a set of randomly generated solutions, called particles, search
for the best solution by adjusting their flight directions and velocities. It is important
to note that the position and velocity of particles are influenced by local and global
experiences of particles. The local experience (denoted as pbest) is known as the
cognitive part of particle’s movement and depends on the particle own experience on
finding best position among its neighbors and over each iteration within the search
process. The global experience (denoted as gbest) is known as the social component
of the particle’s movement and depends on finding the best position among all par-
ticles [17]. The particles modify their positions and velocities using Eqs. 1 and 2,
respectively.

xid (t + 1) = xid (t) + vid (t + 1) (1)

vid (t + 1) = w ∗ vid (t) + r1 ∗ c1 ∗ [pid (t) − xid (t)]
+ r2 ∗ c2 ∗ [gd (t) − xid (t)] (2)

210 M. Habib et al.

where d is the dimension number. w is the inertia weight, r1 and r2 are random
numbers ∈ [0, 1], c1 and c2 are acceleration constants, pid shows the personal best
position for a particle (pbest), and gd indicates the global best position among the
population (gbest).

Multi-objective optimization problems are problems that have normally a set of
conflicting objectives that needs optimization. The aim of multi-objective optimiza-
tion is to find a set of trade-off (non-dominated) solutions rather than one optimal
solution [13]. The set of non-dominated solutions is called Pareto optimal set. Exper-
imentally, PSO proved to outperform classical methods to solve optimization prob-
lems [10]. The formulation of MOPSO integrates the use of Pareto dominance to
produce a group of leaders that guide the search process. Certainly, those leaders rep-
resent the set of non-dominated solutions which stored in external memory (known
as repository or archive). Selecting a leader among set of potential leaders to be
the global guide is done using roulette wheel selection based on a hypercube score.
Mainly, the archive composed of two parts the controller and the grid. The con-
troller is responsible about accepting new solutions into the archive or not accepting,
whereas the grid is to enhance the diversity of solutions since the objective space is
divided into hypercubes regions that assigned a fitness value based on the number
of solutions they contain. The fittest and preferred hypercube is the one with less
number of solutions.

The following steps summarize the procedure of MOPSO algorithm [10].

1. Initialize the population POPi, where i =[1, 2,…,N], N is the population size.
2. Initialize the velocity of each particle VELi.
3. Evaluate each particle and assign it with a fitness value.
4. Store non-dominated solutions in external archive (REP).
5. Create hypercubes.
6. Initialize the memory of each particle and store the initial positions as the best

particles’ positions found.
7. Calculate the speed of each particle using Eq.3.
8. Calculate the new positions of each particle using Eq.1.
9. Preserve the particles within the search space constraints’ boundaries.
10. Evaluate the particles.
11. Update the REP and hypercubes by inserting the new non-dominated solutions.
12. Update the memory of personal best position of each particle.
13. If the termination condition is met, then stop, otherwise go back to step 7.

Updating the velocity in MOPSO is slightly different from that in PSO, in which
the global best solution should be chosen from the repository using leader selection
mechanism as given by Eq.3:

vid (t + 1) = w ∗ vid (t) + r1 ∗ c1 ∗ (pid (t) − xid (t))

+r2 ∗ c2 ∗ (REP(h) − xid (t)) (3)

where REP(h) is a to be taken from the repository using a roulette wheel selection
methodology.

Multi-objective Particle Swarm Optimization for Botnet Detection in Internet of Things 211

3.2 Binary MOPSO

Originally, MOPSO was designed to deal with continuous variables [13]. Since we
are handling feature selection problem, this requires transforming the search space
into binary search space. If a feature is selected it is indicated by one, otherwise it
is a zero. Converting the continuous PSO into binary PSO requires the adoption of
such kind of mathematical transfer functions (TF) [45]. The TF defines a probability
to select a feature or not select it. If the random probability is less than the value of
the transfer function, then the feature is assigned a value zero, otherwise it is one.
We use the Sigmoid transfer function that is defined by Eq.4.

T (vid (t)) = 1

1 + e−2∗vid (t) (4)

where vid (t) is subject to the particle velocity at iteration t and dimension d.
Using the produced value of the TF from Eq.4, the particles’ position will be

updated using Eq.5

xid (t + 1) =
{
1 if rand ≥ T (vid (t))
0 if rand < T (vid (t))

(5)

Consequently, the velocity inEq.3will be updated using the produced binary position
from Eq.5.

3.3 Fitness Formulation

MOPSO and NSGA-II are multi-objective optimization algorithms used for FS.
Evaluating the selected subset of features is done based on two objectives: The first
objective f1(x) is the classification error rate (ER), and the second one f2(x) is the
number of selected features. The formulation of the fitness function is as described
by Eq.6:

Min. F(x) =
⎧⎨
⎩
f1(x) = FP+FN

TP+FP+TN+FN × 100% , (P + N) ∈ R
+

f2(x) = l
A , l ∈ A, A ∈ R

+
(6)

l is the selected number of features. A is the total number of features. FP is the false
positives, FN is the false negatives, TP is the true negatives, and the TN is the true
negatives [27].

212 M. Habib et al.

3.3.1 K-Nearest Neighbor (K-NN)

K-NN is a common, nonparametric machine learning algorithm used for different
purposes, such as classification and regression. For classification, the objective of K-
NN is to classify new objects depending on the features and the K-nearest neighbors
of the training samples. Hence, the new object assigned a class label that is the
most common class of its neighbors [11]. K-NN is simple and easy to implement,
which is applied to different application areas, as feature selection [9, 46] and pattern
recognition [2, 44]. The K-NN (k=5) is used for assessing the performance of the
utilized optimizers, with fivefold cross-validation [33, 46], inwhich the classification
error rates were averaged to get the final fitness of each candidate solution.

The output ofmulti-objective optimization problem is a set of non-dominated vec-
tors. ForFSproblems, the non-dominatedvectors represent twoobjective functions—
the error rate and the number of features. An example of a non-dominated solution
for FS is v1=[0.001,5], where 0.001 is the error rate and 5 is the number of features.

3.4 Experimental Setup

The implementation of both MOPSO and NSGA-II has been done in MATLAB
R2010b. All datasets are split into 34, 66% for testing and training, respectively.
Basically, MOPSO generates initial vectors of solutions that indicate the potential
optimal subset of features. In order to evaluate the selected subsets of features, the
5-NN classifier is used with fivefold cross-validation on the training set, during the
fitness evaluation of MOPSO [33, 46]. Afterward, the selected subsets of features
were evaluated on the testing set (34%) using (5-NN) in order to have the final
testing classification error rate. The methodology is repeated, iteratively, until the
termination criterion is met, which is the maximum number of iterations. Figure3
shows an overview of the designedmethodology. Each algorithm had 10 independent
runs, of which each run includes 100 iterations, the population size is 30, and the
maximum archive size is 100. The parameter settings for MOPSO and NSGA-II are
as shown in Table 1.

3.5 Dataset Description

We have constructed five datasets from nine public IoT datasets which were drawn
from UCI repository [16]. The datasets represent real network traffic collected from
nine IoT devices. The devices are a thermostat, a webcam, two types of doorbells,
four types of security cameras, and a baby monitor. A presents a detailed description
about the nine IoT datasets. The raw traffic has been collected as follows:

Multi-objective Particle Swarm Optimization for Botnet Detection in Internet of Things 213

Table 1 Parameter settings

Algorithm Parameter Value

MOPSO Acceleration constants [1.49618, 1.49618]

Inertia weight, inertia damping
rate

[0.7298, 0.99]

Number of grids per dimension 7

Inflation rate 0.1

Leader selection pressure 2

Deletion selection pressure 2

NSGA-II Crossover percentage (CP) 0.9

Number of parents 2*round(CP*nPop/2)

Mutation percentage (MP) 0.4

Number of mutants round(MP*nPop)

Data normalization

MOPSO

 set of nondominated
solutions (archive)

Selected feature subset

Final fitness evaluation
(5-NN)

Number of Features,
Error rate, accuracy,
sensitivity, specificity,

gmean

34% 66%

Training dataTesting data

Input dataset

Fig. 3 Overview of methodology design

214 M. Habib et al.

Training set Testing set

Benign data

 Bashlite botnet

UDP flooding data

TCP flooding data

Spam Data

IP address spoofing &
spam data

Scanning the network for
 vulnerable devices

UDP flooding data

Ack flooding data

Syn flooding data

UDP flooding with
fewer options

Scanning the network for
 vulnerable devices

Mirai botnet

Fig. 4 Training process

• Connecting the devices via Wi-Fi to various access points.
• Recording behavioral snapshots of the network packets using Wireshark software
and port mirroring technique.

• Extracting 115 traffic statistical features.

The statistical features are time intervals between packet arrivals, packet sizes, and
counts. For each device, the data are obtained under both normal working conditions,
and ten different attacks are performed by Bashlite andMirai botnets. The conducted
attacks are like UDP, TCP, ACK, SYN flooding, sending spam data, and scanning
for vulnerable devices [43].

The novel approach that we are adopting is that the training set for each dataset
consisting two different types of attacks, whereas the testing set contains ten different
types of attacks. In other words, the algorithm will be trained on just two types of
attacks and will be tested on ten, in which two attacks of them the algorithm has
already trained on while the remaining eight attacks are unseen as attacks. Figure4
illustrates the designed process for training and testing data.

Furthermore, it is important to note that the training set has a balance class ratio. In
contrast, the testing set is imbalance, in which the ratio of normal traffic to malicious
traffic is 1:13. Table2 presents a description of the constructed datasets.

Multi-objective Particle Swarm Optimization for Botnet Detection in Internet of Things 215

Table 2 Datasets specifications

Training set Testing set

Benign-to-
malicious
ratio

Types of attacks Benign-to-
malicious
ratio

Number of
attacks

Dataset 1 1:1 UDP flooding,
spam data

1:13 10

Dataset 2 1:1 UDP and TCP
flooding

1:13 10

Dataset 3 1:1 Scan for
vulnerable
devices, SYN
flooding

1:13 10

Dataset 4 1:1 UDP and ACK
flooding

1:13 10

Dataset 5 1:1 UDP flooding
with fewer
options, TCP
flooding

1:13 10

4 Experimental Results and Discussion

This section illustrates the used evaluation metrics as well as a discussion of the
obtained results, in both of comparing MOPSO vs NSGA-II, versus traditional
machine learning algorithms, and vs filter-based methods.

4.1 Evaluation Measures

Five evaluation measures are used to compare MOPSO with other methods. They
are the false alarm rate, true-positive rate, true-negative rate, geometric mean, and
the area under curve [27].

False alarm rate (FAR) is the percentage of classifying normal instances as mali-
cious instances (Eq.7).

FAR = FP

FP + TN
(7)

True-negative rate (TNR) is also known as specificity (Eq.8).

TNR = TN

FP + TN
(8)

216 M. Habib et al.

True-positive rate (TPR) is known as sensitivity and probability of detection rate
(Eq.9).

TPR = TP

FN + TP
(9)

G-mean is known as the geometric mean (Eq.10).

G-mean = √
specificity.sensitivity (10)

Area under curve (AUC) is the area under the ROC curve (Eq.11).

AUC = (1 − FPR) ∗ (1 + TPR)

2
+ FPR ∗ TPR

2
(11)

4.2 Results and Discussions

The investigation of MOPSO performance in the field of IoT botnet detection is
done by first comparing MOPSO against the NSGA-II algorithm. Furthermore, the
results of MOPSO are verified by comparing it with traditional classifiers (zero rule
classifier, k-nearest neighbor (K-NN), decision tree (DT), and multilayer perceptron
(MLP)), and filter-based feature selection methods.

4.2.1 Comparison with NSGA-II

Table3 compares the performance of MOPSO with NSGA-II over five IoT datasets
using the aforementioned performance measures (FAR, TNR, TPR, G-mean, and
AUC). The results show the superiority of MOPSO over NSGA-II in four datasets
(2, 3, 4, and 5). In datasets 3, 4, and 5, MOPSO achieved better results than NSGA-
II in all measures. Considering AUC values, for instance, MOPSO obtains 0.878
versus 0.808 in dataset 3, similarly in dataset 4; MOPSO reaches 0.911, whereas
NSGA-II reaches 0.867. Interestingly, in dataset 4 the results show how much the
two algorithms are competitive, yet a trivial increase of the performance in favor
to MOPSO is noticeable. In such cases, the TPR is (1.000 vs. 0.990). Inspecting
the results on dataset 2, it is evident that NSGA-II does slightly better according
to FAR and TNR, yet MOPSO performs better in the rest of measures. Despite the
encouraging results obtained so far in favor to MOPSO, NSGA-II performs slightly
better than MOPSO in dataset 1. Overall, we see highly competitive results of the
swarm-based algorithm (MOPSO) against the evolutionary-based algorithm (NSGA-
II), while MOPSO tends to have the upper hand.

Figure5 shows the error rate (y-axis) against the number of selected features
(x-axis), in which each sub-figure corresponds to a different dataset. The curves
show the average Pareto front of both MOPSO and NSGA-II. Obviously, NSGA-II

Multi-objective Particle Swarm Optimization for Botnet Detection in Internet of Things 217

Table 3 MOPSO versus NSGA-II performance results

FAR TNR TPR G-mean AUC

Dataset 1 MOPSO 0.070 0.930 0.982 0.955 0.956

NSGA-II 0.044 0.956 0.986 0.970 0.971

Dataset 2 MOPSO 0.059 0.941 0.982 0.961 0.962
NSGA-II 0.047 0.953 0.943 0.947 0.948

Dataset 3 MOPSO 0.222 0.778 0.978 0.869 0.878
NSGA-II 0.280 0.720 0.895 0.797 0.808

Dataset 4 MOPSO 0.120 0.880 1.000 0.936 0.940

NSGA-II 0.148 0.852 0.990 0.915 0.921

Dataset 5 MOPSO 0.177 0.823 0.999 0.902 0.911
NSGA-II 0.250 0.750 0.984 0.854 0.867

holds fewer numbers of features than MOPSO in all datasets, but it obtains higher
average error rate values in datasets 3 and 5 than MOPSO. Although MOPSO has
relatively higher number of features than NSGA-II, it obtains low error rate values as
it is obvious in sub-figure 2. Furthermore, there are fluctuations of the error rate over
the number of features at sub-figures 1 and 4, but at some points MOPSO records
lower values of error rate than NSGA-II.

4.2.2 Comparison with Traditional Machine Learning Algorithms

We compare MOPSO against four classifiers—zero rule classifier (ZeroR) [27],
K-NN, DT (decision-regression tree learner REPTree [26]), and multilayer percep-
tron (voted perceptron [24]) (MLP). ZeroR predicts the majority class in the training
dataset; hence, we use it as a baseline performance for other classification meth-
ods [27]. We have run the experiments on Weka workbench [26], using algorithms’
default parameters settings as defined by Weka.

Tables4, 5, 6, 7, and 8 show the comparison results between MOPSO against
ZeroR, K-NN, DT, and MLP classifiers. Note that the boldface highlights the best
results in all tables. Obviously, MOPSO outperforms the baseline classifier ZeroR in
all datasets in terms of G-mean, AUC, and TPR. As well as MOPSO outperforms 1-
NN, DT, andMLP in datasets 1 and 4 in terms of TPR, G-mean, and AUC, achieving
(0.982, 0.955, 0.956), (1.000, 0.938, 0.940), respectively. In addition, MOPSO holds
the best TPR in datasets 3 and 5, obtaining (0.978, 0999), respectively. It can be seen
that in all datasets, 1-NN and DT perform slightly better than MOPSO in terms of
FAR and TNR, whereas MLP reaches better FAR and TNR than MOPSO in datasets
3 and 4. In contrast, in dataset 2 MOPSO outperforms other classifiers in terms of
AUC and G-mean reaching a peak at (0.962, 0.961), respectively. Overall, we can
conclude that MOPSO is a competitive classifier and optimization algorithm against
other single-objective classifiers.

218 M. Habib et al.

Fig. 5 Comparison of MOPSO and NSGA-II over all datasets

Table 4 Dataset 1 performance results

FAR TNR TPR G-mean AUC

MOPSO 0.070 0.930 0.982 0.955 0.956

ZeroR 0.000 1.000 0.000 0.000 0.500

1-NN 0.000 1.000 0.763 0.873 0.882

DT 0.016 0.984 0.908 0.945 0.946

MLP 0.102 0.898 0.546 0.700 0.722

Table 5 Dataset 2 performance results

FAR TNR TPR G-mean AUC

MOPSO 0.059 0.941 0.982 0.961 0.962

ZeroR 0.000 1.000 0.000 0.000 0.500

1-NN 0.000 1.000 0.596 0.772 0.798

DT 0.016 0.984 0.738 0.852 0.861

MLP 0.578 0.422 0.988 0.646 0.705

Multi-objective Particle Swarm Optimization for Botnet Detection in Internet of Things 219

Table 6 Dataset 3 performance results

FAR TNR TPR G-mean AUC

MOPSO 0.222 0.778 0.978 0.872 0.878

ZeroR 0.000 1.000 0.000 0.000 0.500

1-NN 0.000 1.000 0.711 0.843 0.856

DT 0.016 0.984 0.873 0.927 0.929

MLP 0.094 0.906 0.473 0.655 0.690

Table 7 Dataset 4 performance results

FAR TNR TPR G-mean AUC

MOPSO 0.120 0.880 1.000 0.938 0.940

ZeroR 0.000 1.000 0.000 0.000 0.500

1-NN 0.000 1.000 0.636 0.797 0.818

DT 0.000 1.000 0.604 0.777 0.802

MLP 0.094 0.906 0.473 0.655 0.690

Table 8 Dataset 5 performance results

FAR TNR TPR G-mean AUC

MOPSO 0.177 0.823 0.999 0.907 0.911

ZeroR 0.000 1.000 0.000 0.000 0.500

1-NN 0.000 1.000 0.668 0.817 0.834

DT 0.000 1.000 0.847 0.920 0.924

MLP 0.367 0.633 0.935 0.769 0.784

4.2.3 Comparisons with Filter FS Methods

In this sub-section, we compare the performance ofMOPSOwith conventional filter-
based feature selection methods (ReleifF, correlation-based, information gain, and
symmetrical filter-based methods) over all the datasets. The class of filter-based FS
methods filters out features independently on the induction algorithm. The filtering
criteria evaluate each feature individually using its, for example, Pearson’s correla-
tion, or symmetrical uncertainty with the target class [12]. We use the K-NN (k=5)
as the induction algorithm.

All the experiments in this sub-section have been conducted onWeka [26]. Table9
shows a comparison of the classification error rate of MOPSO with several conven-
tional filter-based methods. It can be seen that MOPSO achieved the lowest error
values at datasets 3, 4, and 5 obtained 0.207, 0.111, and 0.164, respectively. In
dataset 1, however, the correlation-based filter achieved the minimum value which
is 0.001. In dataset 2, although the symmetrical filter achieved 0.048, it is relatively
close to MOPSO value which is 0.56. Furthermore, Tables10, 11, 12, 13, and 14

220 M. Habib et al.

Table 9 Comparison betweenMOPSO classification error with filter-based feature selectionmeth-
ods

ReleifF Correlation InfoGain Symmetrical MOPSO

Dataset 1 0.071 0.001 0.011 0.011 0.066

Dataset 2 0.137 0.082 0.119 0.048 0.056

Dataset 3 0.322 0.318 0.276 0.276 0.207

Dataset 4 0.345 0.341 0.297 0.297 0.111

Dataset 5 0.274 0.230 0.264 0.263 0.164

Table 10 Dataset 1 classification measures of MOPSO versus filter-based feature selection
methods

FAR TNR TPR G-mean AUC

ReleifF 0.219 0.781 0.941 0.857 0.861

Correlation 0.000 1.000 0.999 0.999 1.000

InfoGain 0.000 1.000 0.988 0.994 0.994

Symmetrical 0.000 1.000 0.988 0.994 0.994

MOPSO 0.070 0.930 0.982 0.956 0.956

Table 11 Dataset 2 classification measures of MOPSO versus filter-based feature selection
methods

FAR TNR TPR G-mean AUC

ReleifF 0.000 1.000 0.854 0.924 0.927

Correlation 0.000 1.000 0.911 0.954 0.956

InfoGain 0.000 1.000 0.871 0.933 0.936

Symmetrical 0.000 1.000 0.948 0.974 0.974

MOPSO 0.059 0.941 0.982 0.962 0.962

Table 12 Dataset 3 classification measures of MOPSO versus filter-based feature selection
methods

FAR TNR TPR G-mean AUC

ReleifF 0.000 1.000 0.653 0.808 0.827

Correlation 0.000 1.000 0.657 0.811 0.829

InfoGain 0.000 1.000 0.702 0.838 0.851

Symmetrical 0.000 1.000 0.702 0.838 0.851

MOPSO 0.222 0.778 0.978 0.872 0.878

Multi-objective Particle Swarm Optimization for Botnet Detection in Internet of Things 221

Table 13 Dataset 4 classification measures of MOPSO versus filter-based feature selection
methods

FAR TNR TPR G-mean AUC

ReleifF 0.000 1.000 0.628 0.792 0.814

Correlation 0.000 1.000 0.632 0.795 0.816

InfoGain 0.000 1.000 0.679 0.824 0.840

Symmetrical 0.000 1.000 0.679 0.824 0.840

MOPSO 0.120 0.880 1.000 0.938 0.940

Table 14 Dataset 5 classification measures of MOPSO versus filter-based feature selection
methods

FAR TNR TPR G-mean AUC

ReleifF 0.000 1.000 0.704 0.839 0.852

Correlation 0.000 1.000 0.751 0.867 0.876

InfoGain 0.000 1.000 0.714 0.845 0.857

Symmetrical 0.000 1.000 0.716 0.846 0.858

MOPSO 0.177 0.823 0.999 0.907 0.911

present the performance measures of classification among MOPSO and the afore-
mentioned filter methods. The comparison is over all the five datasets in regard to
FAR, TNR, TPR, G-mean, and AUC. It can be observed from the tables that MOPSO
outperforms other filter methods in datasets 3, 4, and 5 in terms of TPR, G-mean,
and AUC. It is evident that MOPSO outperforms other (considering only TPR) on
dataset 2. In dataset 1, the correlation filter outperforms all other filter methods as
well asMOPSO, where it obtains regarding the FAR, TPR, and AUC as 0.000, 0.999,
and 1.000, respectively. Generally, MOPSO outperformed the used filter methods in
most of the cases.

In summary, the results of this chapter show that MOPSO is able to outperform
NSGA-IIwhenminimizing the error and number of features in feature selection prob-
lems. This algorithm also showed competitive, often superior, results as compared
to conventional feature selection problems. Therefore, we state that this algorithm
has merits to be considered as a feature selection technique. Since we maintained
the multi-objective formulation, there should be another step for decision making
though.

222 M. Habib et al.

5 Conclusion and Future Work

IoT devices are potentially in danger of extensive attacks. Different IoT malwares
have been emerged and triggered large-scale malicious attacks in the last decade
such asMirai and Bashlite. This chapter analyzed the performance of multi-objective
particle swarm optimization for the detection or classification of IoT traffic as attack
or normal. The problem formulated for MOPSO had a discrete search space, so we
would have to develop a binary version of this algorithm.

We constructed new five datasets from the original datasets that were drawn
from UCI repository. The MOPSO algorithm was compared with NSGA-II and
a large number of conventional feature selection algorithms. As per the obtained
results, MOPSO outperformed NSGA-II in regard to false alarm rate, detection rate,
G-mean, and AUC in IoT malicious network traffic. Moreover, MOPSO outper-
formed different machine learning classifiers as ZeroR, K-NN, decision tree, and
MLP. MOPSO, as wrapper-based FS method, showed promising results as per com-
paring it with conventional filter-based methods. For future works, we would like
to test MOPSO against other multi-objective evolutionary algorithms like SPEA-
II, PESA-II, MODE, and NSGA-III. Also, one of the drawbacks of wrapper-based
methods over filter-based methods is the high computational cost, which should
be reduced for computationally expensive datasets. An automatic decision-making
mechanism is recommended to be developed as well to choose one of the Pareto
optimal solutions obtained by MOPSO.

Appendix

IoT Datasets

Dataset Class No. of instances Rate (%)
Security camera XCS7_1003 Normal 19,529 2.40

Mirai botnet ACK flooding 107,188 13.15
Scan 43,675 5.36
SYN flooding 122,480 15.02
UDP flooding 157,085 19.27
UDP plain flooding 48,837 5.99

Sum 47,9265 58.79
Gafgyt botnet Combo (spam data) 59,399 7.29

Junk (spam data) 27,414 3.36
Scan 28,573 3.50
TCP flooding 98,076 12.03
UDP flooding 102,981 12.63

Sum 316,443 38.82
Total sum 815,237 100.00

Multi-objective Particle Swarm Optimization for Botnet Detection in Internet of Things 223

Dataset Class No. of instances Rate (%)
Baby monitor (Philips_B120N10) Normal 175,241 15.95

Mirai botnet ACK flooding 91, 124 8.29
Scan 103, 622 9.43
SYN flooding 118, 129 10.75
UDP flooding 217, 035 19.75
UDP plain flooding 80, 809 7.36

Sum 610,719 55.59
Gafgyt botnet Combo (spam data) 58, 153 5.29

Junk (spam data) 28, 350 2.58
Scan 27, 860 2.54
TCP flooding 92, 582 8.43
UDP flooding 105, 783 9.63

Sum 312,728 28.46
Total sum 1,098,688 100.00

Danmini doorbell Normal 49,549 4.87
Mirai botnet ACK flooding 102, 196 10.04

Scan 107, 686 10.57
SYN flooding 122, 574 12.04
UDP flooding 237, 666 23.34
UDP plain flooding 81, 983 8.05

Sum 652,105 64.04
Gafgyt botnet Combo (spam data) 59, 719 5.86

Junk (spam data) 29, 069 2.85
Scan 29, 850 2.93
TCP flooding 92, 142 9.05
UDP flooding 105, 875 10.40

Sum 316,655 31.10
Total sum 1,018,309 100.00

224 M. Habib et al.

Dataset Class No. of instances Rate (%)
Ennio doorbell Normal 39,101 11.00

Mirai botnet ACK flooding 0 0.00
Scan 0 0.00
SYN flooding 0 0.00
UDP flooding 0 0.00
UDP plain flooding 0 0.00

Sum 0 0.00
Gafgyt botnet Combo (spam data) 53,015 14.91

Junk (spam data) 29,798 8.38
Scan 28,121 7.91
TCP flooding 10,1537 28.56
UDP flooding 103,934 29.24

Sum 316,405 89.00
Total sum 355,506 100.00

Ecobee thermostat Normal 13,114 1.57
Mirai botnet ACK flooding 113,286 13.55

Scan 43,193 5.17
SYN flooding 116,808 13.97
UDP flooding 151,482 18.12
UDP plain flooding 87,369 10.45

Sum 512,138 61.27
Gafgyt botnet Combo (spam data) 53,013 6.34

Junk (spam data) 30,313 3.63
Scan 27,495 3.29
TCP flooding 95,022 11.37
UDP flooding 104,792 12.54

Sum 310,635 37.16
Total sum 835,887 100.00

Multi-objective Particle Swarm Optimization for Botnet Detection in Internet of Things 225

Dataset Class No. of instances Rate (%)

Samsung webcam (SNH_1011_N) Normal 52,151 13.90
Mirai botnet ACK flooding 0 0.00

Scan 0 0.00
SYN flooding 0 0.00
UDP flooding 0 0.00
UDP plain flooding 0 0.00

Sum 0 0.00
Gafgyt botnet Combo (spam data) 58,670 15.64

Junk (spam data) 28,306 7.54
Scan 27,699 7.38
TCP flooding 97,784 26.06
UDP flooding 110,618 29.48

Sum 323,077 86.10
Total sum 375,228 100.00

Security camera PT_737E Normal 62,155 7.50
Mirai botnet ACK flooding 60,555 7.31

Scan 96,782 11.68
SYN flooding 65,747 7.94
UDP flooding 156,249 18.86
UDP plain flooding 56,682 6.84

Sum 436,015 52.64
Gafgyt botnet Combo (spam data) 61,381 7.41

Junk (spam data) 30,899 3.73
Scan 29,298 3.54
TCP flooding 104,511 12.62
UDP flooding 104,012 12.56

Sum 330,101 39.85
Total sum 828,271 100.00

226 M. Habib et al.

Dataset Class No. of instances Rate (%)
Security camera PT_838 Normal 98,515 11.77

Mirai botnet ACK flooding 57, 998 6.93
Scan 97, 097 11.60
SYN flooding 61, 852 7.39
UDP flooding 158, 609 18.95
UDP plain flooding 53, 786 6.43

Sum 429,342 51.30
Gafgyt botnet Combo (spam data) 57, 531 6.87

Junk (spam data) 29, 069 3.47
Scan 28, 398 3.39
TCP flooding 89, 388 10.68
UDP flooding 104, 659 12.51

Sum 309,045 36.93
Total sum 836,902 100.00

Security camera XCS7_1002 Normal 46,586 5.62
Mirai botnet ACK flooding 107, 188 12.93

Scan 43, 675 5.27
SYN flooding 122, 480 14.77
UDP flooding 157, 085 18.95
UDP plain flooding 48, 837 5.89

Sum 479,265 57.81
Gafgyt botnet Combo (spam data) 54, 284 6.55

Junk (spam data) 28, 580 3.45
Scan 27, 826 3.36
TCP flooding 88, 817 10.71
UDP flooding 103, 721 12.51

Sum 303,228 36.57
Total sum 829,079 100.00

Multi-objective Particle Swarm Optimization for Botnet Detection in Internet of Things 227

References

1. Ahmed S, Mafarja M, Faris H, Aljarah I (2018) Feature selection using salp swarm algo-
rithm with chaos. In: Proceedings of the 2nd international conference on intelligent systems,
metaheuristics & swarm intelligence. ACM, pp 65–69

2. Al-Dabagh MZN, Alhabib MHM, AL-Mukhtar FH (2018) Face recognition system based on
kernel discriminant analysis k-nearest neighbor and support vector machine. Int J Res Eng
5(3):335–338

3. Aljarah I, Al-Zoubi AM, Faris H, Hassonah MA, Mirjalili S, Saadeh H (2018) Simultaneous
feature selection and support vector machine optimization using the grasshopper optimization
algorithm. Cogn Comput 1–18

4. Aljarah I, Ludwig SA (2013) Mapreduce intrusion detection system based on a particle swarm
optimization clustering algorithm. In: 2013 IEEE congress on evolutionary computation. IEEE,
pp 955–962

5. Aljarah I, Ludwig SA (2013) Towards a scalable intrusion detection system based on parallel
pso clustering using mapreduce. In: Proceedings of the 15th annual conference companion on
Genetic and evolutionary computation. ACM, pp 169–170

6. Aljarah I, Mafarja M, Heidari AA, Faris H, Zhang Y, Mirjalili S (2018) Asynchronous accel-
erating multi-leader salp chains for feature selection. Appl Soft Comput 71:964–979

7. Angrishi K (2017) Turning internet of things (iot) into internet of vulnerabilities (iov): Iot
botnets. arXiv preprint arXiv:1702.03681

8. Antonakakis M, April T, Bailey M, Bernhard M, Bursztein E, Cochran J, Durumeric Z, Hal-
derman JA, Invernizzi L, Kallitsis M et al (2017) Understanding the mirai botnet. In: USENIX
security symposium, pp 1092–1110

9. Atallah DM, Badawy M, El-Sayed A, Ghoneim MA (2019) Predicting kidney transplantation
outcome based on hybrid feature selection and knn classifier. Multimed Tools Appl 1–25

10. bin Mohd Zain MZ, Kanesan J, Chuah JH, Dhanapal S, Kendall G (2018) A multi-objective
particle swarm optimization algorithm based on dynamic boundary search for constrained
optimization. Appl Soft Comput

11. Bramer M (2007) Principles of data mining, vol 180. Springer
12. Chandrashekar G, Sahin F (2014) A survey on feature selection methods. Appl Soft Comput

40(1):16–28
13. Coello CAC, Pulido GT, LechugaMS (2004) Handling multiple objectives with particle swarm

optimization. IEEE Trans Evol Comput 8(3):256–279
14. Conti M, Dehghantanha A, Franke K, Watson S (2018). Challenges and opportunities. Internet

Things Secur Forensics
15. Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms. MIT press
16. Dua D, Efi KT (2017) UCI machine learning repository
17. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Micro machine

and human science, 1995. MHS’95., Proceedings of the sixth international symposium on.
IEEE, pp 39–43

18. Elrawy MF, Awad AI, Hamed HFA (2018) Intrusion detection systems for iot-based smart
environments: a survey. J Cloud Comput 7(1):21

19. Faris Al-Zoubi AM, Heidari AA, Aljarah I, Mafarja M, Hassonah MA, Fujita H (2019) An
intelligent system for spam detection and identification of the most relevant features based on
evolutionary random weight networks. Inf Fusion 48:67–83

20. Faris H,Aljarah I, Al-Shboul B (2016)A hybrid approach based on particle swarm optimization
and random forests for e-mail spam filtering. In: International conference on computational
collective intelligence. Springer, pp 498–508

21. Faris H, Aljarah I et al (2015) Optimizing feedforward neural networks using krill herd algo-
rithm for e-mail spam detection. In:2015 IEEE Jordan Conference on Applied Electrical Engi-
neering and Computing Technologies (AEECT). IEEE, pp 1–5

http://arxiv.org/abs/1702.03681

228 M. Habib et al.

22. Faris H, Hassonah MA, Al-Zoubi AM, Mirjalili S, Aljarah I (2018) A multi-verse optimizer
approach for feature selection and optimizing svm parameters based on a robust system archi-
tecture. Neural Comput Appl 30(8):2355–2369

23. Faris H, Mafarja MM, Heidari AA, Aljarah I, Al-Zoubi AM, Mirjalili S, Fujita H (2018) An
efficient binary salp swarm algorithm with crossover scheme for feature selection problems.
Knowl-Based Syst 154:43–67

24. Freund Y, Schapire RE (1999) Large margin classification using the perceptron algorithm.
Mach Learn 37(3):277–296

25. Garcia-Teodoro P, Diaz-Verdejo J, Maciá-Fernández G, Vázquez E (2009) Anomaly-based
network intrusion detection: techniques, systems and challenges. Comput&Secur 28(1–2):18–
28

26. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data
mining software: an update. ACM SIGKDD Explor Newsl 11(1):10–18

27. Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier
28. Hemdan EE-D, Manjaiah DH (2018) Cybercrimes investigation and intrusion detection in

internet of things based on data science methods. In: Cognitive computing for big data systems
over IoT. Springer, pp 39–62

29. Jing Q, Vasilakos AV,Wan J, Lu J, Qiu D (2014) Security of the internet of things: perspectives
and challenges. Wirel Netw 20(8):2481–2501

30. Kesavamoorthy R, Soundar KR (2018) Swarm intelligence based autonomous ddos attack
detection and defense using multi agent system. Clust Comput 1–8

31. Kolias C, Kambourakis G, Stavrou A, Voas J (2017) Ddos in the iot: mirai and other botnets.
Computer 50(7):80–84

32. Kowshalya MA, Valarmathi ML (2016) Detection of sybil’s across communities over social
internet of things. J Appl Eng Sci 14(1):75–83

33. Kuhn M, Johnson K (2013) Applied predictive modeling, vol 26. Springer
34. Li J, Zhao Z, Li R, Zhang H, Zhang T (2018) Ai-based two-stage intrusion detection for

software defined iot networks. IEEE Internet Things J
35. Liu L, Xu B, Wu Zhang XX (2018) An intrusion detection method for internet of things based

on suppressed fuzzy clustering. EURASIP J Wirel Commun Netw 1:113
36. Mafarja M, Aljarah I, Faris H, Hammouri AI, Al-Zoubi AM, Mirjalili S (2019) Binary

grasshopper optimisation algorithm approaches for feature selection problems. Expert Syst
Appl 117:267–286

37. Mafarja M, Aljarah I, Heidari AA, Faris H, Fournier-Viger P, Li X, Mirjalili S (2018) Binary
dragonfly optimization for feature selection using time-varying transfer functions. Knowl-
Based Syst 161:185–204

38. Mafarja M, Aljarah I, Heidari AA, Hammouri AI, Faris H, Al-Zoubi AM, Mirjalili S (2018)
Evolutionary population dynamics and grasshopper optimization approaches for feature selec-
tion problems. Knowl-Based Syst 145:25–45

39. Mafarja M, Heidari AA, Faris H, Mirjalili S, Aljarah I (2020) Dragonfly algorithm: theory,
literature review, and application in feature selection. In: Nature-inspired optimizers. Springer,
pp 47–67

40. Mafarja MM, Mirjalili S (2018) Hybrid binary ant lion optimizer with rough set and approxi-
mate entropy reducts for feature selection. Soft Comput 1–17

41. MarzanoA, Alexander D, Fonseca O, Fazzion E, Hoepers C, Steding-JessenK, ChavesMHPC,
Cunha Í, Guedes D, Meira W (2018) The evolution of bashlite and mirai iot botnets. In: 2018
IEEE symposium on computers and communications (ISCC). IEEE, pp 00813–00818

42. MehmoodA,MukherjeeM, Ahmed SH, SongH,Malik KM (2018) Nbc-maids: naïve bayesian
classification technique inmulti-agent system-enriched ids for securing iot against ddos attacks.
J Supercomput 1–15

43. Meidan Y, Bohadana M, Mathov Y, Mirsky Y, Shabtai A, Breitenbacher D, Elovici Y (2018)
N-baiot network-based detection of iot botnet attacks using deep autoencoders. IEEE Pervasive
Comput 17(3):12–22

Multi-objective Particle Swarm Optimization for Botnet Detection in Internet of Things 229

44. Mir A, Nasiri JA (2018) Knn-based least squares twin support vector machine for pattern
classification. Appl Intell 48(12):4551–4564

45. Mirjalili S, Lewis A (2013) S-shaped versus v-shaped transfer functions for binary particle
swarm optimization. Swarm Evol Comput 9:1–14

46. Mohemmed AW, Zhang M (2008) Evaluation of particle swarm optimization based centroid
classifier with different distance metrics. In: 2008 IEEE congress on evolutionary computation
(IEEE world congress on computational intelligence). IEEE, pp 2929–2932

47. Moustafa N, Turnbull B, Choo K-KR (2018) An ensemble intrusion detection technique based
on proposed statistical flow features for protecting network traffic of internet of things. EEE
Internet Things J

48. Pamukov ME, Poulkov VK, Shterev VA (2018) Negative selection and neural network based
algorithm for intrusion detection in iot. In: 2018 41st international conference on telecommu-
nications and signal processing (TSP). IEEE, pp 1–5

49. Rana S, Hossain S, Shoun HI, Abul Kashem M (2018) An effective lightweight cryptographic
algorithm to secure resource-constrained devices. Int J Adv Comput Sci Appl 9(11):267–275

50. Rathore S, Park JH (2018) Semi-supervised learning based distributed attack detection frame-
work for iot. Appl Soft Comput 72:79–89

51. Sanchez-Pi N, Martí L, Molina JM (2018) Applying voreal for iot intrusion detection. In:
International Conference on Hybrid Artificial Intelligence Systems. Springer, pp 363–374

52. Selvarani P, Suresh A, Malarvizhi N (2018) Secure and optimal authentication framework for
cloud management using hgapso algorithm. Clust Comput 1–10

53. Shaikh F, Bou-Harb E, Crichigno J, Ghani N (2018) A machine learning model for classifying
unsolicited iot devices by observing network telescopes. In: 2018 14th international wireless
communications & mobile computing conference (IWCMC). IEEE, pp 938–943

54. Vijayalakshmi J, Robin CRR (2018) An exponent based error detection mechanism against
dxdos attack for improving the security in cloud. Clust Comput 1–10

55. Whitter-Jones J (2018) Security review on the internet of things. In: 2018 Third international
conference on fog and mobile edge computing (FMEC). IEEE, pp 163–168

56. XiaoL,WanX, LuX, ZhangY,WuD (2018) Iot security techniques based onmachine learning:
how do iot devices use ai to enhance security? IEEE Signal Process Mag 35(5):41–49

57. Xue B, Zhang M, Browne WN (2013) Particle swarm optimization for feature selection in
classification: a multi-objective approach. IEEE Trans Cybern 43(6):1656–1671

58. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative
strategies for optimization (NICSO 2010). Springer, pp 65–74

59. Zhang H, Sun G (2002) Feature selection using tabu search method. Pattern Recognit
35(3):701–711

Evolutionary and Swarm-Based Feature
Selection for Imbalanced Data
Classification

Feras Namous, Hossam Faris, Ali Asghar Heidari, Monther Khalafat,
Rami S. Alkhawaldeh and Nazeeh Ghatasheh

Abstract Recently, feature selection task has gained more attention in classification
of problems. This task aims to find themost important features in a large search space
of potential solutions. Hence, a challenging problem is manifested to find the optimal
solution. In this paper, we study a metaheuristic-based approach for feature selection
in binary classification problems. The scenario deals with several highly imbalanced
datasets. In an attempt to handle the problem of imbalanced data, the common fitness
function based on the classification accuracy is replaced with two more effective
fitness functions: the area under the ROC curve and the geometric mean. To evaluate
the effectiveness of the developed approach, two popular metaheuristic approaches
are experimented with the three fitness functions for classifying six imbalanced
datasets. The chapter discusses the impact of the used fitness function on the final

F. Namous · H. Faris (B) · M. Khalafat
King Abdullah II School for Information Technology,
The University of Jordan, Amman, Jordan
e-mail: hossam.faris@ju.edu.jo

F. Namous
e-mail: ferasnamous@gmail.com

M. Khalafat
e-mail: Montherk.1987@gmail.com

A. A. Heidari
School of Surveying and Geospatial Engineering, College of Engineering,
University of Tehran, Tehran, Iran
e-mail: as_heidari@ut.ac.ir; aliasgha@comp.nus.edu.sg; t0917038@u.nus.edu

A. A. Heidari
Department of Computer Science, School of Computing, National University of Singapore,
Singapore, Singapore

R. S. Alkhawaldeh · N. Ghatasheh
Faculty of Information Technology and Systems, The University of Jordan, Aqaba, Jordan
e-mail: r.alkhawaldeh@ju.edu.jo

N. Ghatasheh
e-mail: n.ghatasheh@ju.edu.jo

© Springer Nature Singapore Pte Ltd. 2020
S. Mirjalili et al. (eds.), Evolutionary Machine Learning Techniques,
Algorithms for Intelligent Systems, https://doi.org/10.1007/978-981-32-9990-0_11

231

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-32-9990-0_11&domain=pdf
mailto:hossam.faris@ju.edu.jo
mailto:ferasnamous@gmail.com
mailto:Montherk.1987@gmail.com
mailto:as_heidari@ut.ac.ir
mailto:aliasgha@comp.nus.edu.sg; t0917038@u.nus.edu
mailto:r.alkhawaldeh@ju.edu.jo
mailto:n.ghatasheh@ju.edu.jo
https://doi.org/10.1007/978-981-32-9990-0_11

232 F. Namous et al.

performance of the proposed methods. The proposed methods demonstrated that
some fitness functions like the accuracy rate can mislead the identification process
of the relevant features in imbalanced datasets.

Keywords Feature selection · Evolutionary neural networks · Imbalanced data ·
Classification

1 Introduction

Metaheuristics and evolutionary methods are algorithms that aim to find a near-
optimal solution without using gradient information [12]. These methods can be
categorized into two families in terms of the number of solutions (candidates) to be
processed in one iteration of the optimization process; single-solution-based algo-
rithms and population-based algorithms. In the former family, only one candidate
can be manipulated in each iteration, while in the later, a set of candidates can be
processed in each iteration. There are more possible ways to classify optimizers. For
instance, they can be fairly classified based on general metaphor and unique under-
lying mechanisms. This ’meta’ term in the name shows that these algorithms tried
to simulate similar intelligent behaviors observed in nature. In the other side, we
have nature-inspired optimizers that use new mathematical components and show
superior performance. This level of optimizers is the desired level in the heuristic
area. Also, no free lunch (NFL) theorem [14] encourages all researchers to search
for a new or modified optimizer for dealing with new problems because there is no
ranked one optimizer if we consider average performance on all possible problems.

The initial idea of all swarm and evolutionary optimizers is to evolve the candi-
date solutions based on the existing knowledge on the problem itself and reach a
better solution without any dependency to gradient information. This knowledge can
be obtained by evaluating the fitness function for all solutions to detect which one
is best. Genetic algorithm (GA) [13] is the first attempt that uses the idea of Dar-
win’s theory of evolution in evolving the creatures and solves optimization problems
without gradient information. The well-known GA has three main core bio-inspired
components that are selection, crossover, and mutation. A classic GA only requires
some initial information to solve the problem. First, a genetic representation of the
solutions is needed to feed the input and make a pool of genes. Second, we need the
equation of the objective function to evaluate the quality of solutions in terms of a
specific metric. Hence, the evaluation metric is one of the most critical components
in the procedure of GA.

To simulate the social behaviors of birds, another well-known swarm intelligence
optimizer proposed in 1995 [3, 7]. This method called particle swarm optimization
(PSO), and it inherits a different mechanism compared to GA to move the candidate
solutions toward the personal best and global best solutions in each iteration. PSO
was successfully applied to solve NP-hard optimization problems [9].

Evolutionary and Swarm-Based Feature Selection … 233

Evolutionary and swarm-based algorithms have been utilized in different com-
plex machine learning tasks [4, 8]. One of their popular applications in this context
is to perform the search process for finding the best representative set of features in
the feature selection task in machine learning. In literature, these optimization algo-
rithms were commonly deployed as a component of the wrapper feature selection
methods. Wrapper methods are a type of feature selection that incorporates three
main components which are the search algorithm, an induction algorithm, and an
evaluation criteria. In order to evaluate the subsets of features searched by the search
algorithm, the induction algorithm is trained based on each candidate set of features
and evaluated using a predefined criteria.

In this chapter, we develop a wrapper-based feature selection framework through
which we study the impact of the selection of evaluation component on the classi-
fication results in an imbalanced data distribution. As a search algorithm two meta-
heuristics are investigated: an evolutionary algorithm and a variant of PSO. While
for fitness evaluation accuracy, geometric mean, and the area under ROC curve are
investigated. Moreover, the framework incorporates a simple technique to indicate
the importance of the input features. A series of experiments are conducted to study
how the fitness evaluation component could affect both the classification results and
the identification of the important variables when the training dataset is imbalanced.

The rest of the chapter is organized as follows; Sect. 2 presents a background for
evolutionary search and PSO algorithm, Sect. 3 describes the proposed approach,
while Sect. 4 presents the experiments and results. Finally, the conclusion in Sect. 5.

2 Preliminaries

2.1 Evolutionary Search

In this method, a set of individuals are initialized, which each of them represents a
possible solution of the formulated problem [6]. Then, two individuals are selected
as promising parents to generate two off-springs, and an iterative process of select-
ing parents is used to generate a group of off-springs using crossover and mutation
techniques. Thereafter, the refined two children are replaced with non-relevant solu-
tions in the search space called steady-state strategy or the group of children is
replaced with the whole solutions called generational strategy. However, the strategy
is repeated to hopefully end up with an optimal (or sub-optimal) solution for the
specific problem.

Evolutionary strategy is considered one of the most popular evolutionary algo-
rithms that uses generational strategy for updating the population either from the
generated off-springs (μ, λ) or from the combination of the best individuals of par-
ents and the generated off-springs (μ + λ); where theμ refers to parents and λ refers
to off-springs with μ > λ. In this chapter, the (μ, λ) evolution strategy is used that
is shown in Algorithm 1. The algorithm in a loop generates λ individuals from ran-

234 F. Namous et al.

dom parent Pi and then, replaces the first μ individuals in the population with the λ

individuals.
For selection scheme, the binary tournament selection is used. Then a bit-flip

mutation is applied and generational replacement with elitism is used to keep the
best individual. These processes are applied in each iteration until the maximum
number of iterations is reached [6].1

Algorithm 1 (μ, λ) Evolutionary Search
1: Initialization
2: Choose x1, x2, . . . , xμ ∈ {0, 1}n uniformly at random
3: Collect x1, x2, ..., xμ in P0
4: t := 0
5: while ¬StopCondition do
6: for all i ∈ {1, 2, . . . , λ} do
7: Select y ∈ Pt uniformly at random
8: Create yi by standard bit mutation of y with pm = 17/n
9: Selection for Replacement
10: Collect the first μ individuals in Pt+1.
11: t := t + 1
12: return Sbest

2.2 Particle Swarm Optimization

One of the main swarm-basedmethods is the PSO algorithm created by Kennedy and
Eberhart for handling both constrained and unconstrained tasks [3, 7]. The structure
of this method is simple. It uses a set of moving agents named as a particle that can
change their locations based on some stochastic and iterative processes. The best
particle (fittest one) among all particles is known as gbest. All particles try to reach
the location of gbest. All particles also consider the best position explored by them
during the searching process. Personal best location (pbest) is the best solution found
by a specific search agent. If this pbest be the best location found by all particles,
then, we have the same gbest and pbest. Based on this logic, all particles need to be
updated during several iterations limited by the user. The main rules are obtained via:

v
j
i (t + 1) = ω1v

j
i (t) + c1r1(pbest

j
i − x j

i (t)) + c2r2(gbest
j
i − x j

i (t)) (1)

x j
i (t + 1) = x j

i (t) + v
j
i (t + 1) (2)

1Interested readers can refer to following links accessed on April 2019 (a) https://github.com/
sebastian-luna-valero/EvolutionarySearch (b) http://weka.sourceforge.net/packageMetaData/
EvolutionarySearch/index.html (c) NEO Group website at http://neo.lcc.uma.es.

https://github.com/sebastian-luna-valero/EvolutionarySearch
https://github.com/sebastian-luna-valero/EvolutionarySearch
http://weka.sourceforge.net/packageMetaData/EvolutionarySearch/index.html
http://weka.sourceforge.net/packageMetaData/EvolutionarySearch/index.html
http://neo.lcc.uma.es

Evolutionary and Swarm-Based Feature Selection … 235

where t represents the current iteration, ω1 denotes an inertial weight, v
j
i (t) is the

velocity value of j-th dimension in i-th solution, x j
i (t) denotes j-th dimension in

i-th solutions, r1 and r2 show random values in (0,1), c1 and c2 show the individual
and social coefficients, respectively. These factors usually are set to 2. The pbest
and gbest show the personal and global best solutions, respectively. As stated by
Angeline [1], although the PSO is able to solve some multi-modal problems faster
than other optimizers like GA, it may still be trapped in local optima when tackling
cases with many variables.

In this chapter, we utilized the geometric PSO [10], which is a modified variant
of PSO proposed in 2007. In this variant, all parts are similar, but the velocity term is
removed, and the rule for the updating of position vector is the convex combination.
In addition, a mutation scheme is utilized and three weighting coefficients are non-
negative and their summation is one. For this PSO variant, we have some specific
convex combination rules for the Euclidean,Manhattan, andHamming spaces, which
are explained in [10].

The pseudo-code of the geometric PSO is observed in Algorithm 2.

Algorithm 2 Pseudo-code of geometric PSO algorithm
1: Initialize the population xi (i = 1, 2, . . . , n)

2: while stopping condition is not met do
3: for Each particle i do
4: Obtain the fitness of all particles
5: Update the positions of particles based on a randomized convex combination
6: Mutate xi
7: Attain the fitness values f (x j

i)

8: if f (x j
i) < f (pbest ji) then

9: pbest ji ← x j
i

10: if f (x j
i) < f (gbest ji) then

11: gbest ji ← x j
i

3 Framework

The mathematical formulation of feature selection is a combinatorial optimization
problem for optimizing the generalization performance of the predictive model. This
model depends on the error of selecting a subset of features from the dataset. In par-
ticular, a random population of individuals that is a set of possible predictive models
(or solutions) is generated. Each individual consists of a sequence of genes represent
the inclusion or not of particular features in the model. Thereafter, a predictive model
or classifier is trained for each individual by only using inclusion genes (features).
In order to evaluate the quality of the predictive model in selection of the features,
the evolution technique uses the fitness function. It represents the evaluation met-
ric used in the machine learning field. In a consecutive sequence of generations,

236 F. Namous et al.

 f1 f2 ... fn
Individual1

 f1 f2 ... fn
Individual2

 f1 f2 ... fn
Individualn

Population Generation
f1, f2, …, fn

Data Set Initialization

Classifier Fitness1

Classifier Fitness2

Classifier Fitnessn

Crossover

P1

P2

Selection

Mutation

Stop
Cond.

Y
es

N
o

t = t+1

Feature Subset

Fig. 1 Feature selection framework based on a metaheuristic algorithm

the individuals of high fitness values have a high probability of being selected in
recombination and mutation to reach the optimal individuals of the relevant subset
of features. Figure1 illustrates this framework.

For instance, assume a set of features in a data set are F = { f1, f2, f3, . . . , fn},
the feature selection technique aims to select a subset of such features Fs ⊆ F that are
more relevant and provide high generalization performance for the predictive model.
The technique generates random individuals each of which contains a sequence of
genes either 1 for inclusion or 0 for exclusion of features for building the predictive
model. Let us use the decision tree (DT) algorithm as a classifier and the AUC as
metric of fitness function evaluation. We build N predictive models (or DT clas-
sifiers) represent the population size with each individual relate to a specific label
and evaluate the AUC metric as a fitness function. Finally, while using evolution
processes, the feature selection technique picks the most relevant individual of high
fitness value, where the inclusion features have resulted as a subset of near-optimal
output for the performance generalization of predictive models.

Evolutionary and Swarm-Based Feature Selection … 237

3.1 Metaheuristic Search

In this framework, two metaheuristic algorithms are used as a search algorithm in
the wrapper, which are the evolutionary search and particle swarm optimization. We
described these methods earlier in Sect. 2. These two algorithms were selected due
to their popularity in the literature and their wide range of applications in feature
selection tasks.

3.2 Internal Evaluation (Fitness Functions)

Three different fitness functions are utilized and experimented independently to eval-
uate their effect on the classification performance in the imbalanced class distribution.
The three functions are the accuracy rate, g-mean, and area under ROC (AUC). The
accuracy rate and g-mean measures are derived from the confusion matrix for binary
classification problems shown in Table1.

• Accuracy: This metric reflects the total number of correctly classified instances
compared to the total number of instances in the dataset and it can be represented
as:

Accuracy rate = T P + T N

T P + T N + FP + FN
(3)

• G-mean: This metric reveals the balance between classification performances on
the majority and minority class considering both Sensitivity and specificity.

G-Mean =
√
T P

P
× T N

N
(4)

• Area under ROC (AUC): This metric is a well-regarded metric that can be utilized
to evaluate the tested classifiers with aim of providing a probabilistic score for
their prediction rates. AUC can be obtained using a prior info that presented in
graph of receiver operating characteristics (ROC). AUC is suitable to deal with
imbalanced datasets because it does not dependent on the ratio of the classes [5].

Table 1 Confusion matrix for binary classification

Predicted positive Predicted negative

Actual positive True positive (TP) False negative (FN)

Actual negative False positive (FP) True negative (TN)

238 F. Namous et al.

ROC = 1

NPositive × NNegative

NPositive∑
iPosi tive

NNegative∑
iNegative

1PiPositive>PiNegative
(5)

3.3 Induction Algorithm (The Classifier)

The learning algorithm which is in our case will be a classifier that is frequently built
during the search process of the wrapper. For each candidate subset of features, a
new classifier is built using these features. Wrapper-based FS is well-known to be
computationally expensive due to this learning process. Therefore, it is common to
choose a fast and easy method to train algorithm. In this work, we chose the decision
trees J48 algorithm for this task.2 J48 is an implementation in Java of the popular
C4.5 algorithm3 [11].

3.4 External Evaluation

For evaluating the final prediction models that are developed based on the selected
feature, six evaluation measures are used. Beside the accuracy rate, AUC, and
g-mean, three other ratios are used which are:

• Sensitivity is the number of positive data instances that are correctly classified and
divided by the number of the positive data instances (P), which is also called true
positive rate. Sensitivity can be represented as given in Eq.6.

Sensi tivi t y = T P

P
(6)

• Specificity is the number of negative data instances that are correctly classified
and divided by the number of the negative data instances (P), which is also called
true negative rate. Specificity can be represented as given in Eq.7.

Speci f ici t y = T N

N
(7)

• The average number of selected features. This number is calculated over the total
number of repetitions of the experiments.

2Interested readers can refer to following link: https://machinelearningmastery.com/how-to-run-
your-first-classifier-in-weka/.
3Interested readers can refer to following link: http://weka.sourceforge.net/doc.dev/weka/
classifiers/trees/J48.html.

https://machinelearningmastery.com/how-to-run-your-first-classifier-in-weka/
https://machinelearningmastery.com/how-to-run-your-first-classifier-in-weka/
http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html

Evolutionary and Swarm-Based Feature Selection … 239

3.5 Relevance of Input Features

To quantifying the relevance of input features, we count the appearance of each
feature in the best subset of features over the course of iterations. The more the
feature is selected, the higher relevance is.

4 Experiments and Results

In this section, we conduct a set of experiments to evaluate the implementation of the
EA and PSO as feature selection techniques based on a set of imbalanced datasets
using various fitness functions derived from the conventional evaluation metrics.

4.1 Setup of Experiments

The framework of the experiments was implemented using Android studio and the
open sourceWeka 3.9 library in order to utilize and upgrade the built-in functionality
in Weka [6].4 Two packages in Weka were used; which are evolutionary search and
PSO search. The two packages were modified to integrate the G-mean based fitness
function and the feature impact analyzer.

The initial values of the EA and PSO parameters are given in Tables2 and 3.

4.2 Description of Datasets

In this study, six imbalanced datasets are drawn from the UCI repository [2]. The
details of datasets are presented in Table4. The ratio of the minor class in the datasets
is varied from to around 8–35%. It is expected that the smaller ratio of the minor
class the more challenging the dataset becomes.

4.3 Results and Discussion

The results of the experiments are shown in Tables5, 6, 7, 8, 9 and 10. Each table
presents the evaluation results of EA and PSO of different fitness functions when
evaluated based on a specific dataset.

4Interested readers can refer to following links: (a) https://developer.android.com/studio (b) https://
www.cs.waikato.ac.nz/ml/weka/documentation.html.

https://developer.android.com/studio
https://www.cs.waikato.ac.nz/ml/weka/documentation.html
https://www.cs.waikato.ac.nz/ml/weka/documentation.html

240 F. Namous et al.

Table 2 Setting parameters for EA

Parameters Value

Generations 20

Population size 20

Crossover probability 0.6

Mutation probability 0.1

Table 3 Setting parameters for PSO

Parameters Value

Iterations 20

Population size 20

Individual weight 0.34

Inertia weight 0.33

Mutation probability 0.01

Table 4 Descriptions of datasets [2]

Dataset No. of
instances

No.of
attributes

Class attribute (Minority %:
Majority %)

Pima 768 8 (1, 0) (34.77: 65.23)

German 1000 20 (Bad, good) (30.00: 70.00)

Ecoli 336 7 (iMU, remainder) (10.42: 89.58)

Haberman 306 3 (Die, survive) (26.47: 73.53)

Splice 3176 60 (ei, remainder) (23.99: 76.01)

Glass 214 9 (Ve-win-float-proc,
remainder)

(7.94: 92.06)

Table 5 Evaluation results based on ecoli dataset

Fitness
function

Accuracy AUC G-mean

EA PSO EA PSO EA PSO

Accuracy 0.9349
(0.0028)

0.9344
(0.0035)

0.9314
(0.0020)

0.9314
(0.0020)

0.9289
(0.0042)

0.9288
(0.0045)

Specificity 0.7268
(0.0151)

0.7273
(0.0149)

0.7353
(0.0038)

0.7353
(0.0038)

0.7507
(0.0154)

0.7507
(0.0164)

Sensitivity 0.9349
(0.0028)

0.9344
(0.0035)

0.9314
(0.0020)

0.9314
(0.0020)

0.9289
(0.0042)

0.9288
(0.0045)

AUC 0.8244
(0.0537)

0.8258
(0.0542)

0.8848
(0.0052)

0.8848
(0.0052)

0.8064
(0.0392)

0.8051
(0.0482)

G-mean 0.6769
(0.0243)

0.6781
(0.0239)

0.6923
(0.0052)

0.6923
(0.0052)

0.7158
(0.0223)

0.7157
(0.0238)

Features 2.43 (0.63) 2.47 (0.63) 2.13 (0.43) 2.13 (0.43) 4.77 (0.86) 4.43 (1.17)

Evolutionary and Swarm-Based Feature Selection … 241

Table 6 Evaluation results based on German dataset

Fitness
function

Accuracy AUC G-mean

EA PSO EA PSO EA PSO

Accuracy 0.7456
(0.0095)

0.7482
(0.0094)

0.7366
(0.0084)

0.7379
(0.0123)

0.7423
(0.009)

0.7378
(0.0076)

Specificity 0.6591
(0.0122)

0.6628
(0.0123)

0.653
(0.0176)

0.6435
(0.0181)

0.6748
(0.0151)

0.6625
(0.012)

Sensitivity 0.7456
(0.0095)

0.7482
(0.0094)

0.7366
(0.0084)

0.7379
(0.0123)

0.7423
(0.009)

0.7378
(0.0076)

AUC 0.712
(0.0134)

0.7236
(0.0095)

0.7236
(0.0095)

0.7272
(0.0093)

0.7091
(0.0145)

0.714
(0.0156)

G-mean 0.6273
(0.0163)

0.6172
(0.0306)

0.6172
(0.0306)

0.597
(0.0319)

0.6529
(0.0203)

0.6349
(0.0167)

Features 7.23 (2.05) 5.63 (0.96) 5.63 (0.96) 5.06 (0.87) 8.27 (1.55) 6.53 (1.79)

Table 7 Evaluation results based on glass dataset

Fitness
function

Accuracy AUC G-mean

EA PSO EA PSO EA PSO

Accuracy 0.9263
(0.0036)

0.9251
(0.0043)

0.9274
(0.0053)

0.9263
(0.0068)

0.9293
(0.002)

0.9291
(0.0022)

Specificity 0.6617
(0.0123)

0.6243
(0.0707)

0.6569
(0.0193)

0.6545
(0.0212)

0.6642
(0.0107)

0.6623
(0.0146)

Sensitivity 0.9263
(0.0036)

0.9251
(0.0043)

0.9274
(0.0053)

0.9263
(0.0068)

0.9293
(0.002)

0.9291
(0.0022)

AUC 0.7784
(0.0345)

0.6989
(0.1526)

0.8154
(0.0207)

0.8119
(0.0235)

0.8151
(0.0192)

0.8134
(0.0209)

G-mean 0.5817
(0.0217)

0.4465
(0.2513)

0.5717
(0.0361)

0.5678
(0.0395)

0.5843
(0.0197)

0.5808
(0.0272)

Features 3.6 (0.86) 2.77 (1.65) 5.2 (0.71) 5.3 (0.84) 4.57 (0.82) 4.57 (0.82)

Table 8 Evaluation results based on Haberman dataset

Fitness
function

Accuracy AUC G-mean

EA PSO EA PSO EA PSO

Accuracy 0.7353 (0) 0.7353 (0) 0.719 (0) 0.719 (0) 0.719 (0) 0.719 (0)

Specificity 0.5 (0) 0.5 (0) 0.5837 (0) 0.5837 (0) 0.5837 (0) 0.5837
(0.0146)

Sensitivity 0.7353 (0) 0.7353 (0) 0.719 (0) 0.719 (0) 0.719 (0) 0.719 (0)

AUC 0.4889 (0) 0.4889 (0) 0.6087 (0) 0.6087 (0) 0.6087 (0) 0.6087 (0)

G-mean 0 (0) 0 (0) 0.508 (0) 0.508 (0) 0.508 (0) 0.508 (0)

Features 0 (0) 0 (0) 2 (0) 2 (0) 2 (0) 2 (0)

242 F. Namous et al.

Table 9 Evaluation results based on pima dataset

Fitness
function

Accuracy AUC G-mean

EA PSO EA PSO EA PSO

Accuracy 0.7568
(0.0038)

0.7557
(0.0053)

0.7508
(0.0061)

0.7508
(0.0061)

0.7502
(0.0078)

0.7494
(0.0078)

Specificity 0.7183
(0.0051)

0.7173
(0.0067)

0.7068
(0.0058)

0.7068
(0.0058)

0.712
(0.0074)

0.711
(0.0084)

Sensitivity 0.7568
(0.0038)

0.7557
(0.0053)

0.7508
(0.0061)

0.7508
(0.0061)

0.7502
(0.0078)

0.7494
(0.0078)

AUC 0.7614
(0.0138)

0.7587
(0.0156)

0.784
(0.0108)

0.784
(0.0108)

0.7676
(0.0138)

0.7658
(0.0141)

G-mean 0.7067
(0.0071)

0.7058
(0.009)

0.6916
(0.0059)

0.6916
(0.0059)

0.7006
(0.0082)

0.6994
(0.0098)

Features 4.57 (0.63) 4.7 (0.88) 4.47 (0.63) 4.47 (0.63) 5.63 (0.99) 5.8 (0.76)

Table 10 Evaluation results based on splice dataset

Fitness
function

Accuracy AUC G-mean

EA PSO EA PSO EA PSO

Accuracy 0.9738
(0.0005)

0.9746
(0.0004)

0.9726
(0.0014)

0.9726
(0.001)

0.9737
(0.0007)

0.9743
(0.0006)

Specificity 0.9718
(0.0009)

0.9732
(0.0008)

0.9702
(0.0021)

0.9704
(0.0015)

0.9719
(0.001)

0.9727
(0.001)

Sensitivity 0.9738
(0.0005)

0.9746
(0.0004)

0.9726
(0.0014)

0.9726
(0.001)

0.9737
(0.0007)

0.9743
(0.0006)

AUC 0.9734
(0.0015)

0.9754
(0.0014)

0.9733
(0.0023)

0.9754
(0.0016)

0.9734
(0.0018)

0.9745
(0.0017)

G-mean 0.9718
(0.0009)

0.9732
(0.0008)

0.9702
(0.0021)

0.9704
(0.0015)

0.9719
(0.001)

0.9727
(0.001)

Features 30.13 (2.71) 15.03 (2.51) 28.97 (3.21) 20.1 (3.84) 30.03 (4.25) 15.97 (2.24)

As per results for the first dataset, if we consider the accuracy as fitness function,
we see that the EA perform better than PSO in terms of accuracy. However, in terms
of AUC and g-mean, PSO is better than EA. Based on the number of features, again
EA is better than PSO.

Evolutionary and Swarm-Based Feature Selection … 243

When we use AUC as fitness function, we see the PSO and EA have exactly the
same performance based on all measures. If we consider g-mean as fitness function,
we see almost similar accuracy, specificity, and sensitivity measures. However, EA
outperforms its peer based on AUC metric and number of features. In terms of g-
mean, they are almost similar.

As per result on German dataset, it is observed that the PSO provides better
accuracy when we evaluate the results based on accuracy fitness function. This also
remains valid in terms of AUC and number of features. It is interesting that we see
that EA performs better in terms of g-mean. If we consider the AUC as the evaluation
metric, we see PSO is preferable in terms of accuracy, number of features, and AUC.
However, this time, EA is better in terms of g-mean. In the case of g-mean as fitness
function, EA has obtained a higher accuracy and g-mean. Again, we see the PSO is
better than EA based on AUC metric and number of features.

Based on results for glass dataset and we consider the accuracy as the fitness
function, we see that EA outperforms the PSO in terms of the accuracy, AUC, and
g-mean rates. However, in terms of number of features, we see that the PSO is better
than GA. In the case of AUC metric, PSO is better than EA in terms of accuracy
metric. However, EA outperforms the PSO based on AUC and g-mean metrics. In
addition, EA provides a lower number of features. In the last case that we have set
the g-mean as the evaluation function, EA is better than PSO in terms of all metrics.

Based on Haberman case, we see there is no difference between PSO and EA
when we consider any fitness function.

In the case of splice, we see PSO beats EA in all measures, when we consider the
accuracy as the fitness function. In the case of AUC, the results are very competitive
but PSO has a better value in terms of AUC and number of features. If we consider
g-mean as the fitness function, it is observed that the PSO beats EA in all measures.

In the case of pima dataset, by using the accuracy function, EA outperforms PSO
in all cases except number of features. It is interesting that based on second fitness,
all results are same and no difference was observed. Based on the g-mean function,
we see EA is slightly better than PSO in all measures.

From another point of view, the obtained results show that the accuracy on each
class is maximized in terms of sensitivity and specificity when the g-mean fitness
function is used. We can notice also that AUC comes second, while the accuracy
fitness is worst for these imbalanced cases. However, this advantage of the g-mean
fitness function comes at the cost of increase in the number of selected features
compared to the AUC and accuracy functions.

In Figs. 2, 3, 4, 5, 6 and 7, we monitor the frequency of features over the course
of generations for both methods in the six datasets. For clarity purpose, we plot-
ted the most frequent five features obtained by both methods in dealing with these
dataset. Examining these figures, it can be noticed that in most cases the most rele-
vant five features and their rank change by changing the fitness function used in the
metaheuristic. Therefore, any analysis of the relevant features performed after a bad
selection of a fitness function can mislead the conclusions, and consequently affect
the any decision process can be built based on this analysis.

244 F. Namous et al.

Fig. 2 Identification of the most frequent five features in Ecoli dataset

Evolutionary and Swarm-Based Feature Selection … 245

Fig. 3 Identification of the most frequent five features in German dataset

246 F. Namous et al.

Fig. 4 Identification of the most frequent five features in glass dataset

Evolutionary and Swarm-Based Feature Selection … 247

Fig. 5 Identification of the most frequent five features in Haberman dataset

248 F. Namous et al.

Fig. 6 Identification of the most frequent five features in splice dataset

Evolutionary and Swarm-Based Feature Selection … 249

Fig. 7 Identification of the most frequent five features in pima dataset

250 F. Namous et al.

5 Conclusion

In this chapter, we investigated the impacts of three different fitness functions on
the performance of evolutionary and swarm-based feature selection algorithms in
the context of imbalanced datasets. The fitness functions are the accuracy rate, the
area under ROC curve (AUC), and the g-mean. The experiments were conducted on
six datasets that are varied in their minor class ratio which ranged from 8 to 35%.
Evaluation results show that by using g-mean and AUC fitness functions a better
balance between the classification accuracy of each class can be achieved. Moreover,
there is a slight advantage for g-mean that comes at the cost of a small increase in
the number of selected features. Therefore, the g-mean fitness function is highly
recommended when the targeted dataset has a high imbalanced class distribution.
On the other side, the accuracy fitness function should be avoided as it tends to
increase the classification accuracy of the major class at the expense of the minor
class, and consequently canmislead the identification process of the relevant features.

References

1. Angeline PJ (1998) Using selection to improve particle swarm optimization. In: The 1998
IEEE International Conference on Evolutionary computation proceedings, 1998. IEEE World
Congress on Computational Intelligence. IEEE, pp 84–89

2. Dua D, Graff C (2017) UCI machine learning repository
3. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings

of the sixth international symposium on Micro machine and human science, 1995. MHS’95.
IEEE, pp 39–43

4. Faris H, Al-Zoubi Heidari AA, Aljarah I, Mafarja M, Hassonah MA, Fujita H (2019) An
intelligent system for spam detection and identification of the most relevant features based on
evolutionary random weight networks. Inf Fusion 48:67–83

5. FarisH,Aljarah I,Al-MadiN,Mirjalili S (2016)Optimizing the learning process of feedforward
neural networks using lightning search algorithm. Int J Artif Intell Tools 25(06):1650033

6. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data
mining software: an update. SIGKDD Explor 11(1):10–18

7. Kennedy J, Eberhart R (1995) A new optimizer using particle swarm theory. In: Proceedings
of the sixth international symposium on micro machine and human science, 1995. MHS ’95,
pp 39–43

8. Lin S-W, Ying K-C, Chen S-C, Lee Z-J (2008) Particle swarm optimization for parameter
determination and feature selection of support vector machines. Expert Syst Appl 35(4):1817–
1824

9. Mavrovouniotis M, Li C, Yang S (2017) A survey of swarm intelligence for dynamic optimiza-
tion: algorithms and applications. Swarm Evol Comput 33:1–17

10. Moraglio , Di Chio C, Poli R (2007) Geometric particle swarm optimisation. In: European
conference on genetic programming. Springer, pp 125–136

11. Quinlan R (1993) C4.5: programs for machine learning. Morgan Kaufmann Publishers, San
Mateo, CA

12. Talbi E-G (2009) Metaheuristics: from design to implementation, vol 74. Wiley
13. Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85
14. Wolpert DH, Macready WG et al (1997) No free lunch theorems for optimization. IEEE Trans

Evol Comput 1(1):67–82

Binary Harris Hawks Optimizer for
High-Dimensional, Low Sample Size
Feature Selection

Thaer Thaher, Ali Asghar Heidari, Majdi Mafarja, Jin Song Dong and
Seyedali Mirjalili

Abstract Feature selection is a preprocessing step that aims to eliminate the features
that may negatively influence the performance of the machine learning techniques.
The negative influence is due to the possibility of having many irrelevant and/or
redundant features. In this chapter, a binary variant of recent Harris hawks optimizer
(HHO) is proposed to boost the efficacy of wrapper-based feature selection tech-
niques. HHO is a new fast and efficient swarm-based optimizer with various simple
but effective exploratory and exploitative mechanisms (Levy flight, greedy selection,

T. Thaher
College of Engineering and Information Technology, An-Najah National University,
Nablus, Palestine
e-mail: thaer.thaher@gmail.com

Department of Information Technology, At-Tadamun Society, Nablus, Palestine

A. A. Heidari
School of Surveying and Geospatial Engineering, College of Engineering,
University of Tehran, Tehran, Iran

A. A. Heidari · J. S. Dong
Department of Computer Science, School of Computing, National University of Singapore,
Singapore, Singapore
e-mail: as_heidari@ut.ac.ir; aliasgha@comp.nus.edu.sg; t0917038@u.nus.edu

J. S. Dong
e-mail: dongjs@comp.nus.edu.sg; j.dong@griffith.edu.au

M. Mafarja
Department of Computer Science, Faculty of Engineering and Technology,
Birzeit University, PoBox 14, Birzeit, Palestine
e-mail: mmafarja@birzeit.edu

J. S. Dong
Institute for Integrated and Intelligent Systems, Griffith University, Nathan,
Brisbane 4111, Australia

S. Mirjalili (B)
Torrens University Australia, Brisbane, QLD 4006, Australia
e-mail: ali.mirjalili@gmail.com

Griffith University, Brisbane, QLD 4111, Australia

© Springer Nature Singapore Pte Ltd. 2020
S. Mirjalili et al. (eds.), Evolutionary Machine Learning Techniques,
Algorithms for Intelligent Systems, https://doi.org/10.1007/978-981-32-9990-0_12

251

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-32-9990-0_12&domain=pdf
mailto:thaer.thaher@gmail.com
mailto:as_heidari@ut.ac.ir
mailto:aliasgha@comp.nus.edu.sg; t0917038@u.nus.edu
mailto:dongjs@comp.nus.edu.sg
mailto:j.dong@griffith.edu.au
mailto:mmafarja@birzeit.edu
mailto:ali.mirjalili@gmail.com
https://doi.org/10.1007/978-981-32-9990-0_12

252 T. Thaher et al.

etc.) and a dynamic structure for solving continuous problems. However, it was orig-
inally designed for continuous search spaces. To deal with binary feature spaces, we
propose a new binary HHO in this chapter. The binary HHO is validated based on
special types of feature selection datasets. These hard datasets are high dimensional,
which means that there is a huge number of features. Simultaneously, we should
deal with a low number of samples. Various experiments and comparisons reveal the
improved stability of HHO in dealing with this type of datasets.

Keywords Harris Hawk optimizer · Optimization · Feature selection · Neural
networks · Artificial intelligence · Machine learning · Data science

1 Introduction

With1 the development of technologies, the dimension of the collected data is in-
creasedwhich has the largest effect on extracting the useful information to analyze the
data [1]. However, some features of the collected data are irrelevant, and the redun-
dant features lead to the degradation of the performance of the prediction methods.
Also, it is a challenge to determinewhether the features are relevant or not. To address
the problem of the high dimensionality of data (also known as “the curse of dimen-
sionality”) and improving the performance of the prediction, the feature selection
(FS) can be used as a preprocessing step. The FS selects only the relevant features
and removing the other features (i.e., irrelevant and redundant) and decreases the
time required to learn the predictors.

There are many factors that make the FS as a difficult task among these factors,
like the high interaction among the features [2]. So, it is important to determine the
subset of features that can capture the characteristics of the classes for distinguishing
among them with a small number of features.

Whereas the large search domain makes the FS as a more challenging problem,
because the size of the search domain is increased exponentially with increasing the
number of features. For example,when the dimension of the dataset is l features, there
exists 2l solutions and it is impractical to use an exhaustive search for solving the
FS. So, the FS methods require two components: (1) the evaluation criterion, which
is used to assess the quality of the selected features, and (2) the search technique,
which explores the domain of the feasible solutions to determine the optimal subset
of features.

According to the evaluation criterion, there are two groups of the FS methods: the
filter-based and thewrapper-based [3]. The filter-based approaches select the features
subset independently from the predictors. This FS category includes information gain
(IG), ReliefF, rain ratio, and chi-square [4]. Unlike the filter-based approaches, the

1Note that the codes of HHO method can be publicly downloaded from: http://www.alimirjalili.
com/HHO.html and http://www.evo-ml.com/2019/03/02/hho.

http://www.alimirjalili.com/HHO.html
http://www.alimirjalili.com/HHO.html
http://www.evo-ml.com/2019/03/02/hho

Binary Harris Hawks Optimizer for High-Dimensional, … 253

category of the wrapper-based approaches used the predictors to evaluate the quality
of the selected features.

Moreover, there are several search techniques that have been used to find the subset
of features to improve the performance of classification such as the greedy search
and the random search [5]. In the greedy search technique, all combinations of the
features are generated and evaluated which make this technique be time-consuming.
Meanwhile, the random search technique explores the search space randomly for
the next subset of features. However, these methods have some limitations such
as easily stuck at a local optimal point and, also, they have high space and time
complexity. In order to solve these problems of the previous mentioned FS methods,
the metaheuristic techniques have been used.

These well-spread methods emulate the physical, the biological, and the animal
social behaviors in nature [6]. However, despite various mathematical models and
inspirations, all metaheuristic approaches have two core phases: diversification (ex-
ploration) and intensification (exploitation) [7]. Harris hawks optimizer (HHO) is
a new powerful swarm-based method proposed by Heidari et al. [8]. It utilizes two
phases of exploration and four phases of exploitation, which makes it possible to get
excellent results in dealing with several mathematical and engineering problems.

In this work, a wrapper-based FSmethod based onKNNclassifier and the recently
proposedHHOalgorithm is designed for thefirst time to handle the high-dimensional,
low sample medical datasets. Generally, the FS methods have two main objectives:
minimizing the number of the selected features and minimizing the error rate of the
classification. We considered both objective functions and after a sensitivity analysis
and comparing S-shaped and V-shaped transfer functions (TFs), we compared the
results of the best binary variant with other well-established methods.

2 Feature Selection

FS is the process of choosing a subset of features according to a certain criterion in
order to eliminate the irrelevant and redundant features, and thus, improve the perfor-
mance of learnedmodel in terms of predictive power, speed, and simplicity. Formally
speaking, FS can be considered as an optimization problem in which an initial set
of features F = {X1, X2, . . . , Xn} is given, where n represents the total number of
features in the dataset. The objective is to pick a subset F ′ = {X ′

1, X
′
2, . . . , X

′
m},

where m < n, and try to maintain the classification accuracy higher.
The framework of FS consists of two major components: The search process that

considers the different feature subsets, and the evaluation mechanism for these sub-
sets. From evaluations perspective, FS methods can be categorized into two main
categories: filter-based and wrapper-basedmethods. In filter-basedmethods, the sub-
set is not evaluated over the training examples (i.e., it does not involve a specific
learning algorithm); however, it depends on the information content and selects the
most informative subset [9]. On the other hand, the wrapper-based methods evaluate
the feature subsets by involving an external learning algorithm (classification algo-

254 T. Thaher et al.

rithms), where the model is trained using the selected subset and its performance
is evaluated based on a validation dataset. Comparing these two types, filter-based
methods are computationally faster than wrapper-based classes because the evalua-
tion mechanism does not consider any classifier (external algorithm). However, the
predictive power of wrapper-based techniques are usually better than filters, which
strongly depend on the utilized learning algorithm.

In the searching process, different searching strategies can be employed, such as
complete search, heuristic search, and random search [3]. However, when dealing
with high-dimensional datasets that have N features, the total number of possible
subsets is 2N and therefore, the computational cost increases, exponentially. A com-
plete search is exhaustive and inapplicable approach for FS problem. Moreover, the
random technique is also impractical to handle FS methods because it may perform
a complete search in the worst case. Heuristic methods can be a trade-off between
the complete and random search approaches. In heuristic strategy, the solutions are
iteratively evolved to be improved toward the near-optimal solutions based on a
given objective function. Heuristic methods can obtain high-quality solutions within
a reasonable time. Therefore, heuristic algorithms are employed with FS methods.

In this chapter, a wrapper-based FS algorithm using KNN classifier and a new
binary HHO algorithm is developed for the first time to handle the high-dimensional,
low sample FS tasks in medical applications.

3 Harris Hawks Optimization (HHO)

HHO is a novel optimizer that inspires the chain of action and reactions of a hunting
process performed by hawks and rabbits. As it was revealed in the original paper
of HHO, the core mathematical foundation of this optimizer makes it an effective
optimizer in dealing with various constrained and unconstrained problems. In this
optimizer, the search agents are updated using two phases of exploration and four
phases of exploitation. It utilizes several time-varying mechanisms with a greedy
scheme to enhance the quality of results. In this part, we briefly review the core

|E|≥ 1 |E|≥ 0.5 |E|< 0.5

r ≥ 0.5

r <0.5

Soft besiege Hard besiege

Soft besiege with
progressive rapid

dives

Hard besiege with
progressive rapid

dives

Exploration Exploitation|E|= 1

|E|= 0.5

Fig. 1 Different steps of HHO

Binary Harris Hawks Optimizer for High-Dimensional, … 255

Table 1 Explanations of symbols used in the mathematical model of HHO

Description Symbol

Position vector of hawks (search agents), location of i th hawk X , Xi

Position of rabbit (best agent) Xrabbit

Position of a random hawk Xrand

Average position of hawks Xm

Swarm size, iteration counter, maximum number of iterations N , t , T

Random numbers inside (0,1) r1, r2, r3, r4, r5, q

Dimension, upper and lower bounds of variables D, LB, UB

Escaping energy, initial state of energy E , E0

phases and equations of HHO, mathematically. The stages of HHO are represented
in Fig. 1. Table1 describes the symbols used in HHO’s mathematical model.

3.1 Exploration Phase

In this phase, algorithm tries to enhance the diversity of population and scan all
regions of the feature space. HHO has two simple phases to perform the exploration
stage, which are obtained by:

X (t + 1) =
{

Xrand(t) − r1 |Xrand(t) − 2r2X (t)| q ≥ 0.5
(Xrabbit (t) − Xm(t)) − r3(LB + r4(UB − LB)) q < 0.5

(1)

where

Xm(t) = 1

N

N∑
i=1

Xi (t) (2)

This average location can be obtained using any external function that can obtain a
center of gravity for all agents.

3.2 Shifting from Exploration to Exploitation

To balance themain searching trends, an optimizer needs to properly shift the search-
ing trends from extensive diversification to focused intensification. HHO uses the
concept of decreasing energy of a rabbit when it escapes to handle this vital aspect
of searching process. The model used here is time-varying and stochastic-based to
ensure the dynamic and random nature of HHO. The energy rate of a prey is modeled
by:

256 T. Thaher et al.

E = 2E0(1 − t

T
) (3)

3.3 Exploitation Phase

3.3.1 Soft Besiege

After exploring favorite regions of the feature space, the HHO focuses on the vicinity
of better solutions to finally reach optimum or near-optimum solution. These process
is divided into four sub-level stages to efficiently exploit the search spaceusing several
alternative updating vectors. To perform a soft besiege, we need to use the following
general rule:

X (t + 1) = ΔX (t) − E |J Xrabbit (t) − X (t)| (4)

ΔX (t) = Xrabbit (t) − X (t) (5)

where J = 2(1 − r5) is the jump strength of the rabbit.

3.3.2 Hard Besiege

This phase is to put more emphasis to the exploitation power around some of high-
quality solutions. This task is performed using Eq. (6):

X (t + 1) = Xrabbit (t) − E |ΔX (t)| (6)

3.3.3 Soft Besiege with Progressive Rapid Dives

In soft besiege stage, there is a decision-making option for all hawks. Based on this
rule, we represent the following rule in Eq. (7):

Y = Xrabbit (t) − E |J Xrabbit (t) − X (t)| (7)

In HHO, LF-based patterns used to model this phase, which the rule can be
obtained by:

Z = Y + S × LF(D) (8)

where S has the size of 1 × D as a vector and LF shows the function that generate
levy-based patterns. One of the ways to generate levy patterns is as follows:

Binary Harris Hawks Optimizer for High-Dimensional, … 257

LF(x) = u × σ

|v| 1
β

, σ =
(

�(1 + β) × sin(
πβ

2)

�(
1+β

2) × β × 2(
β−1
2)

) 1
β

(9)

where u, v are random parameters of LF and β is 1.5. However, any levy function
can be used as an external function in HHO.

Hence, this phase is performed by Eq. (10):

X (t + 1) =
{
Y i f F(Y) < F(X (t))
Z i f F(Z) < F(X (t))

(10)

where Y and Z are calculated using Eqs.(7) and (8).

3.3.4 Hard Besiege with Progressive Rapid Dives

In this stage, we have the following condition:

X (t + 1) =
{
Y ′ i f F(Y) < F(X (t))
Z ′ i f F(Z) < F(X (t))

(11)

where Y ′ and Z ′ can be obtained by new rules in Eqs. (12) and (13).

Y ′ = Xrabbit (t) − E |J Xrabbit (t) − Xm(t)| (12)

Z ′ = Y + S × LF(D) (13)

where Xm(t) is obtained using Eq. (2). For more illustrations, please refer to original
paper [8] and online materials.2

3.4 Pseudocode of HHO

The pseudocode of the HHO is described in Algorithm 1.

4 Proposed Binary HHO

In this section, a binary version of HHO (BHHO) should be developed to adapt the
FS problem.

2Please visit these home pages that are publicly devoted to HHO algorithm: http://www.alimirjalili.
com/HHO.html and http://www.evo-ml.com/2019/03/02/hho.

http://www.alimirjalili.com/HHO.html
http://www.alimirjalili.com/HHO.html
http://www.evo-ml.com/2019/03/02/hho

258 T. Thaher et al.

Algorithm 1 Pseudocode of HHO algorithm [8]
Inputs: N and T
Outputs: Xrabbit
Initialize Xi (i = 1, 2, . . . , N)

while (stopping condition is not met) do
Calculate the fitness values
Set Xrabbit as the best solution
for (each hawk (Xi)) do

Update E0 and jump strength J � E0=2rand()-1, J=2(1-rand())
Update E by Eq. (3)
if (|E | ≥ 1) then � Exploration phase

Update the location vector by Eq. (1)
if (|E | < 1) then � Exploitation phase

if (r ≥0.5 and |E | ≥ 0.5) then � Soft besiege
Update the location vector by Eq. (4)

else if (r ≥0.5 and |E | < 0.5) then � Hard besiege
Update the location vector by Eq. (6)

else if (r <0.5 and |E | ≥ 0.5) then � Soft besiege with progressive rapid dives
Update the location vector by Eq. (10)

else if (r <0.5 and |E | < 0.5) then � Hard besiege with progressive rapid dives
Update the location vector by Eq. (11)

Return Xrabbit

In literature, several approaches have been developed to adapt continuous algo-
rithmswith binary search spaces [10]. These binarizationmethods can be categorized
into two major groups. The first one is called continuous-binary operator transfor-
mation in which the original real operators of metaheuristic equations are redefined
into binary operators [11]. While, in the second group, which is called two-step
binarization, the real operators are used without modifications, while the produced
continuous solutions are converted into binary by utilizing two additional steps. The
first step employs a transfer function (TF) that aims to transform the continuous
solution Rn into an intermediate probability vector [0, 1]n , where each element in
this vector defines the probability of converting the corresponding element in Rn to
1 or 0. In the second step, the intermediate solution is transformed into binary by
applying different binarization methods [10].

In literature, two main types of TFs were defined based on their shapes. The
S-shaped TF as shown in Fig. 2a, which is firstly introduced byKennedy and Eberhart
[12] to convert the continuous PSO into binary using Eq. (14). While the V-shaped
function shown in Fig. 2b was introduced by Rashedi et al. [13] to binarize GSA
using Eq. (15), these two TFs are incorporated with two binarization rules (standard
and complement), respectively.

We used the two basic TFs, i.e., S-shaped and V-shaped as in Eqs. (14) and (15),
respectively, as a first step to binarize HHO algorithm.

T (x j
i (t)) = 1

1 + e−x j
i (t)

(14)

Binary Harris Hawks Optimizer for High-Dimensional, … 259

T (x j
i (t)) = | tanh(x j

i (t))| (15)

where x j
i represents the j th dimension of the i th solution at iteration t , and T (x j

i (t))
is the probability value obtained by TF.

As a second step of binarization process, the standard rule (Eq. 16) was used
with the S-shaped function, while the complement rule (Eq. 17) was used with the
V-shaped function to update the elements of the feature subset in the next iteration.

x j
i (t + 1) =

{
0 If rand < T (x j

i (t + 1))

1 otherwise
(16)

where X j
i (t + 1) is the new binary value corresponds to the j th dimension of the i th

solution in Rn , T (x j
i (t)) is the probability value obtained by TF using Eq. (14), and

r is a random number with uniform distribution in (0, 1) .

x j
i (t + 1) =

{
¬xki (t) r < T (x j

i (t + 1))

x j
i (t) otherwise

(17)

where � indicates the complement of x j
i (t), and T (xi) is the probability value ob-

tained using Eq. (15)

5 BHHO-Based Feature Selection

In this chapter, a wrapper-based FS that considers the BHHO as a search algorithm
is proposed for the first time in literature. Note that KNN classifier as an evaluator is

Fig. 2 a S-shaped and b V-shaped transfer functions

260 T. Thaher et al.

used, as illustrated in Fig. 3. We used the KNN classifier [14] as one of the simplest,
and most utilized nonparametric classification techniques. In addition, it has been
widely used in literature and has shown a competitive performance with variety of
FS methods [15].

When designing any optimizer, two main elements of the optimization problem
should be considered: the solution representation and the evaluation function. For
this purpose, candidate solutions should be encoded in a suitable way based on the
nature of handled problem. It is an important step that implies the size of the search
space and plays a key role in the overall efficiency of the optimizer. On the other
hand, the evaluation function guides the search process by measuring the quality of
the candidate solutions. FS has a binary nature, so each candidate solution can be
represented as a one-dimensional vector with N elements X = {x1, x2, x3, . . . , xN },
where N is the total number of features. Each element has a value of 0which indicates
that the feature is not selected or 1 which indicates that the feature is selected.
The fitness of a feature subset is measured based on two contradictory metrics: the
minimum number of selected features and the maximum classification accuracy.
Since we are using a single-objective HHO, these two objectives are formulated
using the fitness function in Eq. (18) [16].

↓ Fitness = αγR(D) + β
|R|
|N | (18)

where γR(D) is the classification error rate resulted by classifier, |R| is the number
of selected features by the optimizer, and |N | is the total number of features α ∈ [0,
1], β = (1 − α) are two parameters [17].

6 Results and Discussion

In this section, we have performed several tests and experiments to detect the ad-
vantage, disadvantage, and efficacy of HHO and its place compared to previous
optimizers. To have a fair comparison, we have to set all setting similarly and ensure
that all algorithms have a same initial population.

Table2 shows the used case studies that are high dimensional, low samples
datasets. All datasets can be downloaded from an open public source.3 A train/test
model is necessary before performing any evaluation to substantiate the efficacy of
the proposed BHHO algorithm, where 80% of the dataset were employed for training
and 20% of it were processed for testing. All results and analysis are obtained using
MATLAB 2017a, and overall results of 30 independent runs are compared. We used
a system with an Intel Core i5 machine, 2.2GHz CPU and 4GB of RAM.

We highlighted the best results using a boldface format. In order to judge the
difference of results and detect it is significant or not, we used Wilcoxon rank-

3http://www.gems-system.org/.

http://www.gems-system.org/.

Binary Harris Hawks Optimizer for High-Dimensional, … 261

Fig. 3 Framework of the proposed HHO-based FS method

sum test with degree of 0.05 [19]. However, note that there are some new criticizes
regarding the way we use p-value results to accept the differences or reject them.4

There are also recommendations to improve the way we interpret the p-values [20].
In this study, we follow the current trends in using p-values to judge the significant
[8]. Hence, if the p-value was lower than 0.05, the difference is significant and if not,
the results are statistically similar.

4Please refer to https://www.nature.com/articles/d41586-019-00874-8.

https://www.nature.com/articles/d41586-019-00874-8

262 T. Thaher et al.

Table 2 Summary of high-dimensional low samples data sets [18]

Dataset No. of samples No. of features No. of classes

11_Tumors 174 12533 11

14_Tumors 308 15009 26

Brain_Tumor1 90 5920 5

Brain_Tumor2 50 10367 4

DLBCL 77 5469 2

Leukemia1 72 5327 3

Leukemia2 72 11225 3

Prostate_Tumor 102 10509 2

SRBCT 83 2308 4

In this work, we set the parameters of optimizers based on recommended settings
in initial papers and related works on feature selection area. Table3 shows the setting
of internal parameters of optimizers.

6.1 Sensitivity Analysis

In this part, we are interested to investigate the sensitivity of binary variant to the
initial population and number of iterations. Note that HHO has no initial user-defined
parameter and itsmechanisms are all randomizedwith time-varying nature. The other
benefit from such experiments is to understand how to get the best results for binary
HHO method before comparison with other methods. Such an analysis can show
the size of the swarm, and the number of iterations have a significant impact on the
performance or not.

Table4 compared the accuracy rates realized by BHHO with different combina-
tions of common parameters.

As per rank results in Table4, we see that the binary HHO with 20 agents and
100 iterations is able to generate the best results for these cases. We utilized F-test to
detect the best results as one of the well-knownmethods for raking different methods
in a comparative test.

In Fig. 4, we set different sizes of swarmwith a fixed iteration of 100 to analyze the
sensitivity of HHO to population size. The convergence trends are also in accordance
with the superiority of HHO when we use the population size of 20. Hence, we set
to this setting for the next experiments and comparative studies.

Binary Harris Hawks Optimizer for High-Dimensional, … 263

Table 3 Used parameters settings

Config. Name Value

Fitness function

α 0.99

β 0.01

Common config.

Number of runs 30

Population size 20

No. of iterations 100

Dimension #features

Specific config.

G0 (for GSA) 100

α (for GSA) 20

a (for HHO) From 2 to 0

Qmin(for BA) 0

Qmax (for BA) 2

A Loudness (for BA) 0.5

r Pulse rate (for BA) 0.5

ω (for PSO) From 0.9 to 0.4

cp, cg (for PSO) 2

GA selection Roulette wheel selection

Mutation Probability (in GA) 0.01

Crossover probability (in GA) 0.9

Elite size (in GA) 2

K for KNN 5

Table 4 Average classification accuracy obtained by BHHO with different combinations of com-
mon parameters

#iterations 50 100 150

Population 5 10 20 5 10 20 5 10 20

11_Tumors 0.858 0.785 0.877 0.832 0.726 0.830 0.701 0.698 0.847

14_Tumors 0.539 0.587 0.551 0.611 0.650 0.541 0.603 0.648 0.581

Brain_Tumor1 0.889 0.883 0.902 0.909 0.785 0.980 0.889 0.944 1.000

Brain_Tumor2 0.700 0.717 0.800 0.700 0.787 0.807 0.610 0.630 0.517

DLBCL 0.938 0.875 0.777 0.921 0.904 0.940 0.940 0.938 0.802

Leukemia1 1.000 1.000 0.922 1.000 0.898 0.896 0.898 0.880 0.938

Leukemia2 0.736 0.933 0.867 0.867 0.871 0.916 0.933 0.811 0.867

Prostate_Tumor 0.951 0.929 0.841 1.000 0.905 1.000 0.887 0.865 0.905

SRBCT 0.945 0.888 0.886 0.941 0.839 1.000 0.943 0.855 0.859

Overall
rank (F-test)

4.72 4.72 5.56 3.89 5.67 3.44 5.11 6.39 5.50

264 T. Thaher et al.

Fig. 4 Convergence behavior of BHHOwith 100 iterations and different population sizes in dealing
with all datasets

6.2 Comparison Between BHHO with S-Shaped
and V-Shaped TFs

There are twogeneral classes ofTFs in literature: S-shaped andV-shapedTFs. Several
binary optimizers such as binary GOA, DA, and SSA in FS works also utilized these
functions. There are four classes of S-shaped cases and four types of V-shaped cases.
In this section, we are interested to compare the proposed BHHO with S-shaped and
V-shaped TFs to detect the suitable one. It is important to utilize a proper TF because
the way we transfer the continuous space to binary space is highly significant in the
final obtained classification results.

We used two classes of TFs and the results in terms of accuracy, selected feature,
and fitness metrics are presented in Table5.

As per results in Table5, we see that the BHHO with S-shaped (SBHHO) has
found higher accuracy rates for six test cases. We see that the SBHHO has reached
to maximum accuracy for Prostate_Tumor and SRBCT cases. Based on selected

Binary Harris Hawks Optimizer for High-Dimensional, … 265

Table 5 Comparison between SBHHO and VBHHO in terms of all metrics

Dataset Classification accuracy Selected features Fitness

SBHHO VBHHO SBHHO VBHHO SBHHO VBHHO

11_Tumors 0.830 0.678 3651.43 220.27 0.1717 0.3203

14_Tumors 0.541 0.502 6214.57 25.89 0.4583 0.4963

Brain_Tumor1 0.980 0.946 2314.97 80.80 0.0241 0.0537

Brain_Tumor2 0.807 0.900 3172.10 198.11 0.1937 0.0998

DLBCL 0.940 0.973 1818.53 1.21 0.0631 0.0279

Leukemia1 0.896 0.951 1584.80 62.41 0.1064 0.0490

Leukemia2 0.916 0.838 3956.60 111.22 0.0871 0.1615

Prostate_Tumor 1.000 0.984 3489.40 28.58 0.0033 0.0171

SRBCT 1.000 0.947 784.50 43.51 0.0034 0.0555

Rank (W|T|L) 6|0|3 3|0|6 0|0|9 9|0|0 6|0|3 3|0|6

features, we see that VBHHO has superior results compared to the variant with
S-shaped TF. Based on fitness results, we see that SBHHO reached the best rank. In
this chapter, the first priority is with accuracy rates. Actually, based on application
and priorities of decision makers, we can change the weight of objective functions.
In this study, we supposed that the accuracy has a higher weight compared to the
number of selected features. According to results, we detect that the HHO using
S-shaped TF is able to realize better results.

6.3 Comparison with Other Algorithms

In this section, we compare the performance of the BHHO with S-shaped TF with
other well-established optimizers in terms of different metrics such as accuracy of
results. For this purpose, we utilized genetic algorithm (GA) [21] and binary versions
of gravitational search algorithm (GSA) [13], Antlion optimizer (ALO) [22], bat
algorithm (BAT/BA) [23], salp swarm algorithm (SSA) [24], and particle swarm
optimizer (PSO) [12].

For all these methods, we recorded the average accuracy, number of features that
are selected using the BHHO, and fitness values. All these results are gathered based
on 30 runs.

Table6 compares the results of SBHHO with those obtained by other peers. As
per results in Table6, it is observed that the SBHHO can obtain the best ranks on 11-
Tumors, Brain-Tumor1, DLBCL, Prostate-Tumor, and SRBCT cases. The results
reveal that the SBHHO has obtained the best place, followed by BALO, BPSO,
BGSA, GA, BBA, and BSSA methods.

Table7 provides the p-values of SBHHOcompared to other peers. As per p-values,
we detect that there is a significant difference between the SBHHO and its peers in

266 T. Thaher et al.

Table 6 Comparison of SBHHOversus other optimizers in terms of average classification accuracy

Dataset BGSA BPSO BALO BBA BSSA GA SBHHO

11_Tumors 0.7506 0.8162 0.7143 0.6286 0.6765 0.8162 0.8295

14_Tumors 0.5122 0.5557 0.5942 0.4619 0.5322 0.6381 0.5412

Brain_Tumor1 0.8889 0.8333 0.9444 0.9185 0.8333 0.7778 0.9796

Brain_Tumor2 0.8852 0.6300 0.9000 0.8534 0.7000 0.6667 0.8074

DLBCL 0.8750 0.8208 0.8750 0.9021 0.7792 0.9375 0.9396

Leukemia1 0.8822 0.9844 0.9089 0.8778 0.8222 0.8444 0.8956

Leukemia2 1.0000 0.9333 0.9333 0.5667 0.8689 0.8667 0.9156

Prostate_Tumor 0.8556 0.8937 0.8587 0.8746 0.8191 0.9746 1.0000

SRBCT 0.9706 0.9628 0.9412 0.8804 0.8863 0.8804 1.0000

Mean
rank (F_test)

3.722 3.722 3.111 5.056 5.833 4.333 2.222

Overall rank 3 3 2 5 6 4 1

Table 7 P-values of the Wilcoxon rank-sum test for the classification accuracy based on table 6
(p > 0.05 are shown in bold face)

Dataset SBHHO versus

BGSA BPSO BALO BBA BSSA GA

11_Tumors 1.11E−12 1.01E−04 2.71E−14 8.30E−13 2.71E−14 4.74E−04

14_Tumors 3.37E−09 3.51E−08 9.18E−12 2.50E−11 2.61E−04 2.13E−11

Brain_Tumor1 3.80E−13 3.80E−13 1.79E−07 4.15E−07 3.80E−13 3.80E−13

Brain_Tumor2 3.38E−08 2.63E−12 2.43E−13 3.65E−01 2.43E−13 2.43E−13

DLBCL 2.71E−14 1.32E−13 2.71E−14 1.27E−06 6.75E−13 3.34E−01

Leukemia1 1.05E−01 2.12E−10 1.26E−01 2.21E−01 6.45E−09 1.20E−05

Leukemia2 2.43E−13 2.70E−03 2.70E−03 3.96E−12 3.38E−08 5.36E−09

Prostate_Tumor 1.19E−13 1.97E−13 2.71E−14 5.64E−13 1.55E−13 1.02E−05

SRBCT 9.65E−06 1.79E−07 1.69E−14 5.77E−13 4.16E−14 5.65E−13

most of the cases. These results indicate that SBHHO is able to make a more stable
trade-off between the core searching phases. It has a higher possibility to escape local
optima and avoid immature convergence drawbacks, which results in better accuracy
results.

Studying the outcomes in Table8, we can observe the dominance of SBHHO
in terms of selected features on 88.88% of cases. As per F-test results, we see the
SBHHO is ranked one, followed by BBA, GA, BPSO, BGSA, BSSA, and BALO
methods. If we observe the p-values in Table9, the proposed SBHHO can outperform
others in most of the cases, significantly.

Fitness results are presented in Table 10. It is seen from Table10 that the SBHHO
has outperformed all other competitors and reached the best rank. It outperforms
all optimizers on 11-Tumors, Brain-Tumor1, DLBCL, Prostate-Tumor, and SRBCT

Binary Harris Hawks Optimizer for High-Dimensional, … 267

Table 8 Comparison of SBHHO versus other optimizers in terms of average number of features

Dataset BGSA BPSO BALO BBA BSSA GA BHHO

11_Tumors 6239.93 6202.23 7083.57 5092.63 7160.63 5906.70 3651.43

14_Tumors 7517.57 7486.00 11298.97 6063.40 9472.67 7235.07 6214.57

Brain_Tumor1 2884.33 2822.57 2891.63 2404.77 2892.53 2670.63 2314.97

Brain_Tumor2 5128.90 4953.07 6309.53 4210.87 5095.43 4815.83 3172.10

DLBCL 2669.23 2538.83 3634.70 2193.73 2941.93 2459.10 1818.53

Leukemia1 2635.53 2552.90 3510.97 2191.17 2772.20 2443.33 1584.80

Leukemia2 5513.63 5394.40 5686.40 4567.67 5557.47 5221.63 3956.60

Prostate_Tumor 5209.60 5070.40 6658.57 4200.97 5766.40 4942.50 3489.40

SRBCT 1143.60 1071.13 1168.40 962.73 1193.17 1012.93 784.50

Mean
rank (F_test)

5.111 4.000 6.667 1.889 6.222 3.000 1.111

Overall rank 5 4 7 2 6 3 1

Table 9 P-values of the Wilcoxon rank-sum test for the number of selected features based on table
8 (p > 0.05 are shown in bold face)

Dataset SBHHO versus

BGSA BPSO BALO BBA BSSA GA

11_Tumors 3.01E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11

14_Tumors 7.22E−06 8.29E−06 1.33E−10 4.38E−01 4.50E−11 2.77E−05

Brain_Tumor1 1.53E−04 3.98E−04 1.04E−04 9.19E−02 1.25E−04 1.95E−03

Brain_Tumor2 3.01E−11 3.00E−11 3.02E−11 3.20E−09 3.01E−11 1.04E−10

DLBCL 3.01E−11 3.00E−11 3.02E−11 1.73E−06 3.02E−11 5.05E−E−10

Leukemia1 3.02E−11 4.50E−11 3.02E−11 1.25E−07 3.01E−11 4.60E−10

Leukemia2 8.47E−09 1.01E−08 7.10E−09 9.27E−04 7.77E−09 1.06E−07

Prostate_
Tumor

3.02E−11 3.02E−11 3.02E−11 3.96E−08 3.02E−11 3.00E−11

SRBCT 3.01E−11 2.15E−10 3.00E−11 3.82E−09 3.01E−11 5.04E−10

cases. If we consider the overall rankings, we see the SBHHO has achieved the best
place, while BALO, BPSO, BGSA, BBA, GA, and BSSA are in the next preferences,
respectively. According to the p-value results in Table11, we observe the differences
are meaningful in almost all cases, statistically.

One of the required measures for evaluating the efficacy of optimizers is to com-
pare their convergence behaviors based on a fair comparison. Note that in all ex-
periments, we utilized the same initial population. Convergence trends can reveal
one important feature of optimizers: ability to avoid local optima and immature con-
vergence. If an optimizer cannot make a stable trade-off between exploration and
exploitation, it will be converged to local optima (higher fitness results instead of
lower fitness rates) and then, we witness the immature convergence.

268 T. Thaher et al.

Table 10 Comparison of SBHHO versus other optimizers in terms of average fitness values

Dataset BGSA BPSO BALO BBA BSSA GA2 BHHO

11_Tumors 0.2519 0.1869 0.2885 0.3422 0.3260 0.1867 0.1717

14_Tumors 0.4879 0.4449 0.4093 0.5108 0.4695 0.3631 0.4583

Brain_Tumor1 0.1149 0.1698 0.0599 0.0367 0.1699 0.2245 0.0241

Brain_Tumor2 0.1186 0.3711 0.1051 0.0370 0.3019 0.3347 0.1937

DLBCL 0.1286 0.1820 0.1304 0.0654 0.2240 0.0664 0.0631

Leukemia1 0.1216 0.0202 0.0968 0.0655 0.1812 0.1586 0.1064

Leukemia2 0.0049 0.0708 0.0711 0.3997 0.1348 0.1367 0.0871

Prostate_Tumor 0.1480 0.1101 0.1462 0.0978 0.1846 0.0298 0.0033

SRBCT 0.0341 0.0415 0.0633 0.0721 0.1178 0.1228 0.0034

Mean rank
(F_test)

3.889 3.778 3.556 4.000 6.000 4.444 2.333

Overall rank 4 3 2 5 7 6 1

Table 11 P-values of theWilcoxon rank-sum test for the fitness values based on table 10 (p >0.05
are shown in bold face)

Dataset SBHHO versus

BGSA BPSO BALO BBA BSSA GA

11_Tumors 3.00E−11 5.00E−10 2.99E−11 2.99E−11 2.99E−11 8.12E−07

14_Tumors 3.82E−09 8.35E−08 3.01E−11 3.02E−11 3.83E−06 3.00E−11

Brain_Tumor1 2.88E−11 2.95E−11 3.01E−11 1.87E−02 2.89E−11 2.91E−11

Brain_Tumor2 5.53E−03 2.81E−11 2.98E−11 1.20E−08 2.89E−11 2.86E−11

DLBCL 2.95E−11 2.86E−11 3.01E−11 2.28E−01 3.01E−11 5.05E−10

Leukemia1 1.02E−06 8.32E−08 6.14E−02 3.33E−03 2.98E−11 9.60E−10

Leukemia2 3.00E−11 2.86E−02 2.51E−02 3.00E−11 7.10E−11 2.85E−11

Prostate_Tumor 2.97E−11 3.02E−11 3.00E−11 3.02E−11 3.00E−11 3.00E−11

SRBCT 3.01E−11 3.32E−11 3.00E−11 3.01E−11 3.01E−11 3.00E−11

The convergence trends of SBHHO compared to other approaches are shown in
Figs. 5 and 6. As per convergence curves in Figs. 5 and 6, we observe the superiority
of SBHHO in dealing with 5 out of 9 datasets. However, we still see some stagnation
behaviors for different methods including SBHHO on 14-Tumors, Brain-Tumor2,
Leukemia1, and Leukemia2 cases.

Here, we calculate the rank of all methods considering all evaluated metrics. The
obtained F-test results are shown in Table12. As we can see in Table12, the SBHHO
achieves the best rank, followed by BBA, BPSO, GA, BGSA, BALO, and BSSA
techniques, respectively.

There are several reasons that the binary HHO can show better and very compet-
itive results compared to other competitors. The main reason is that it can establish
a more stable equilibrium between exploration and exploitation. It has a dynamic

Binary Harris Hawks Optimizer for High-Dimensional, … 269

Fig. 5 Convergence curves of all approaches in dealing with 11_Tumors, 14_Tumors,
Brain_Tumor1, and Brain_Tumor2 datasets

Table 12 Overall rank by the F-test for all approaches based on all metrics

Measure BGSA BPSO BALO BBA BSSA GA SBHHO

Accuracy 3.722 3.722 3.111 5.056 5.833 4.333 2.222

Features 5.111 4.000 6.667 1.889 6.222 3.000 1.111

Fitness 3.889 3.778 3.556 4.000 6.000 4.444 2.333

Average
rank

4.241 3.833 4.444 3.648 6.019 3.926 1.889

Final rank 5 3 6 2 7 4 1

structure with a relatively smooth switching behavior between the core phases using
the time-varying E . It also utilizes greedy schemes that make it more exploitative in
the last stages. In the case of immature convergence, HHO has several randomized
operators and enough potential to jump out of local optima, effectively.

270 T. Thaher et al.

Fig. 6 Convergence curves of all approaches in dealing with DLBCL, Leukemia1, Leukemia2,
Prostate_Tumor, and SRBCT datasets

Binary Harris Hawks Optimizer for High-Dimensional, … 271

7 Conclusions and Future Directions

Harris hawks optimizer is a new swarm-based method inspired by the life of intelli-
gent birds. Two initial phases of HHO are devoted to exploration, and four phases are
devoted to exploitative behaviors. In this chapter, we developed and substantiated the
performance of a new binary HHO for the first time. We utilized 9 high-dimensional
low sample cases that are challenging enough because amodel has not adequate sam-
ples to be trained. In addition, when we use these datasets, we have a large feature
space that makes the FS process much harder. The purpose of this chapter was to
compare the efficacy in terms of different well-known metrics with BGSA, BSSA,
GA, BPSO, BBA, and BALOmethods. The results and analyses show the advantages
of binary HHO with S-shaped TFs in terms of exploration and exploitation inclina-
tions. The results suggest that the proposed HHO-based evolutionary FS technique
can be utilized as a promising method in dealing with high-dimensional real-world
datasets that have a low number of samples.

HHO is still new, and there are several new directions to extend the operations
of HHO for tackling more real-world datasets. One of the potential directions is to
apply HHO to hybrid wrapper–filter methods and evolutionary-based FS techniques.
In next papers, we will develop new enhanced variants of binary HHO.

References

1. Pudil P, Novovičová J, Kittler J (1994) Floating search methods in feature selection. Pattern
Recognit Lett 15:1119–1125

2. Seijo-Pardo B, Bolón-Canedo V, Alonso-Betanzos A (2019) On developing an automatic
threshold applied to feature selection ensembles. Inf Fusion 45:227–245

3. Bolón-Canedo V, Alonso-Betanzos A (2019) Ensembles for feature selection: a review and
future trends. Inf Fusion 52:1–12

4. Jin X, XuA, Bie R, Guo P (2006)Machine learning techniques and chi-square feature selection
for cancer classification using sage gene expression profiles. In: International workshop on data
mining for biomedical applications. Springer, pp 106–115

5. Mafarja M, Aljarah I, Heidari AA, Hammouri AI, Faris H, Ala’M A-Z, Mirjalili S (2018) Evo-
lutionary population dynamics and grasshopper optimization approaches for feature selection
problems. Knowl-Based Syst 145:25–45

6. Heidari AA, Aljarah I, Faris H, Chen H, Luo J, Mirjalili S (2019) An enhanced associative
learning-based exploratory whale optimizer for global optimization. Neural Comput Appl

7. Xu Y, Chen H, Heidari AA, Luo J, Zhang Q, Zhao X, Li C (2019) An efficient chaotic mutative
moth-flame-inspired optimizer for global optimization tasks. Expert Syst Appl 129:135–155

8. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimiza-
tion: algorithm and applications. Futur Gener Comput Syst 97:849–872

9. Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97:273–324
10. Crawford B, Soto R, Astorga G, Conejeros JG, Castro C, Paredes F (2017) Putting continuous

metaheuristics to work in binary search spaces. Complexity 2017:1–19
11. Afshinmanesh F, Marandi A, Rahimi-Kian A (2005) A novel binary particle swarm optimiza-

tionmethod using artificial immune system. In: EUROCON2005-The international conference
on Computer as a Tool, vol 1. IEEE, pp 217–220

272 T. Thaher et al.

12. Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In:
1997 IEEE international conference on systems, man, and cybernetics, computational cyber-
netics and simulation, vol 5. IEEE, pp 4104–4108

13. Rashedi E,Nezamabadi-PourH, Saryazdi S (2010)Bgsa: binary gravitational search algorithm.
Nat Comput 9:727–745

14. Altman NS (1992) An introduction to kernel and nearest-neighbor nonparametric regression.
Am Stat 46:175–185

15. Liao T, Kuo R (2018) Five discrete symbiotic organisms search algorithms for simultaneous
optimization of feature subset and neighborhood size of knn classification models. Appl Soft
Comput 64:581–595

16. Mafarja M, Aljarah I, Heidari AA, Faris H, Fournier-Viger P, Li X, Mirjalili S (2018) Binary
dragonfly optimization for feature selection using time-varying transfer functions. Knowl-
Based Syst 161:185–204

17. Faris H, Mafarja MM, Heidari AA, Aljarah I, Ala’M A-Z, Mirjalili S, Fujita H (2018) An
efficient binary salp swarm algorithm with crossover scheme for feature selection problems.
Knowl-Based Syst 154:43–67

18. Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S (2004) A comprehensive evalua-
tion of multicategory classification methods for microarray gene expression cancer diagnosis.
Bioinformatics 21:631–643

19. Luo J, Chen H, Heidari AA, Xu Y, Zhang Q, Li C (2019) Multi-strategy boosted mutative
whale-inspired optimization approaches. Appl Math Model

20. Benjamin DJ, Berger JO (2019) Three recommendations for improving the use of p-values.
Am Stat 73:186–191

21. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3:95–
99

22. Emary E, Zawbaa HM, Hassanien AE (2016) Binary ant lion approaches for feature selection.
Neurocomputing 213:54–65

23. Nakamura RY, Pereira LA, Costa KA, Rodrigues D, Papa JP, Yang X-S (2012) Bba: a binary
bat algorithm for feature selection. In: 2012 25th SIBGRAPI conference on graphics, patterns
and images. IEEE, pp 291–297

24. Sayed GI, Khoriba G, Haggag MH (2018) A novel chaotic salp swarm algorithm for global
optimization and feature selection. Appl Intell 48:3462–3481

A Review of Grey Wolf Optimizer-Based
Feature Selection Methods
for Classification

Qasem Al-Tashi, Helmi Md Rais, Said Jadid Abdulkadir, Seyedali Mirjalili
and Hitham Alhussian

Abstract Feature selection is imperative in machine learning and data mining when
we have high-dimensional datasets with redundant, nosy and irrelevant features. The
area of feature selection deals reducing the dimensionality of data and selecting only
the most relevant features to increase the classification performance and reduce the
computational cost. This problem has exponential growth, which makes it challeng-
ing specially for datasets with a large number of features. To solve this problem, a
wide range of optimization algorithms are used of which grey wolf optimizer (GWO)
is a recent one. This book chapter provides a brief reviewof the latestworks on feature
selection using GWO.

Keywords Grey wolf optimization · Feature selection · Classification · Machine
learning · Artificial intelligence
Q. Al-Tashi · H. Md Rais · S. J. Abdulkadir · H. Alhussian
Department of Computer and Information Sciences, Universiti Teknologi Petronas,
Bandar Seri Iskandar, 32610 Perak, Malaysia
e-mail: qasemacc22@gmail.com; qasem_17004490@utp.edu.my

H. Md Rais
e-mail: helmim@utp.edu.my

S. J. Abdulkadir
e-mail: saidjadid.a@utp.edu.my

H. Alhussian
e-mail: seddig.alhussian@utp.edu.my

Q. Al-Tashi
University of Albydha, Albydha, Yemen

S. J. Abdulkadir
Centre for Research in Data Science (CERDAS), Universiti Teknologi Petronas, Perak,
Malaysia

S. Mirjalili (B)
Torrens University
Australia, Brisbane, QLD 4006, Australia
e-mail: ali.mirjalili@gmail.com

Griffith University, Brisbane, QLD 4111, Australia

© Springer Nature Singapore Pte Ltd. 2020
S. Mirjalili et al. (eds.), Evolutionary Machine Learning Techniques,
Algorithms for Intelligent Systems, https://doi.org/10.1007/978-981-32-9990-0_13

273

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-32-9990-0_13&domain=pdf
mailto:qasemacc22@gmail.com
mailto:qasem_17004490@utp.edu.my
mailto:helmim@utp.edu.my
mailto:saidjadid.a@utp.edu.my
mailto:seddig.alhussian@utp.edu.my
mailto:ali.mirjalili@gmail.com
https://doi.org/10.1007/978-981-32-9990-0_13

274 Q. Al-Tashi et al.

1 Introduction

Data mining has been identified in recent years as a fast-growing area of information
technology research. This is due to the daily collection of massive data and the need
to convert this data into useful information [1]. Data mining is a process in which
patterns are discovered and knowledge extracted from a wide dataset. Data mining
tasks include association analysis, detection of anomalies, clustering, regression and
classification [2]. Feature selection is one of the main preprocessing steps aims to
eliminate redundant and irrelevant attributes within a dataset. Commonly, feature
selection methods are classified into two groups as wrappers or filters methods [3,
4]. Three categories of feature selection have been classified by some scientists which
are: wrapper, filter and embedded methods [5]. There are a diverse kind of classifiers
utilized with feature selection for learning and predicting the models, such as K-
nearest neighbor (KNN), support vector machine (SVM), decision tree, artificial
neural network (ANN) and naïve Bayes.

In the literature, the progress of optimization approaches encouraged through
nature or interaction of animals to find food sources has increased demand [6].
Various optimization techniques have been established using biology-based swarm
intelligence. For example, in 2014Mirjalili et al. havedeveloped a recent optimization
technique named grey wolf optimization (GWO) [7]. This technique is essentially
driven by the searching mechanism of grey wolves for the finest manner to hunt prey.
GWO essentially utilized the nature mechanism, in which the package hierarchy is
used to organize the wolves’ different characters. Additionally, the candidates of
the package are separated into four categories rely on the type’s character of the
wolf, which helps to advance the process of hunting. The four categories are alpha,
beta, delta and omega. Alpha represents the fittest solution for the search. GWO has
received considerable attention in the field of feature selection problems and has
increased year by year. Figure 1 shows the number of studies conducted using GWO

Fig. 1 Studies on feature
selection using GWO

6, 31%

3, 16%
3, 16%

3, 16%

4, 21%

2019 2018 2017 2016 2015

A Review of Grey Wolf Optimizer-Based Feature … 275

in feature selection from 2015 to 2019. The details of these studies are presented in
Sect. 5.

The rest of this review is presented as follows. In the second section, feature
selection concept and methods are defined, whereas the GWO inspiration and math-
ematical equations are introduced in the third section. Fourth section discussed the
grey wolf feature selection mechanism. The performance of GWO-based feature
selection is criticized and reviewed in the fifth section. The final section presents the
conclusion and some research directions to be studied.

2 Feature Selection

Feature selection plays a significant task in machine learning and data mining, where
high-dimensional datasets involve redundant, nosy and irrelevant features. Therefore,
feature selection aims to reduce the dimensionality of the data and select only the
most relevant features to increase the classification performance and reduce the com-
putational cost [8]. Since the search space is huge when the number of features is
large, the problem of finding an optimum feature is considered to be a complicated
and complex problem.

The main objective of feature selection is to determine a small subset of features
from a particular problem domainwhich reflects a high classification performance. In
general, the selection of features is used for four reasons: first, to simplify data in order
to make it easier for users in particular researchers to use and interpret data; second,
to consume a short time by selecting only the important processing feature; third, to
avoid the dimensionality curse; and finally, to improve generalization by reducing
overfitting (reducing variance). Once these four reasons achieved, the misleading
feature, irrelevant and redundant features are successfully removed which resulted
in a good produced selection of features. Figure 1, adapted from [9], illustrates the
process of feature selection (Fig. 2).

As stated in the introduction part, there are commonly two categories of feature
selection algorithms: filter and wrapper approaches [3, 4]. Their key contrast is that
in the feature subset evaluation step, wrapper approaches incorporate a classifica-
tion algorithm. A wrapper method utilizes the classification algorithm to assess the
goodness (e.g., accuracy) of the features selected as a “black box,” while a process of
selection for a filter method is independent of any algorithm for classification. Wrap-
per methods are claimed to be computationally more expensive and less general than
filters. Nevertheless, filters disregard the goodness of the selected features on the
algorithm of classification, whereas wrappers assess the classification performance-
based subsets of feature, and this usually leads to better wrapper performance for
classification than filters [3, 10, 11]. Moreover, some scientists classify the methods
of feature selection into three classes: filter, wrappers and embedded methods [10,
11], where embedded method integrates both the selected features and the classifier
into a single process. Figure 3 shows a summary of the feature selection approaches.

276 Q. Al-Tashi et al.

Training
Set

Feature
Generation

Features

Feature
Selection

Classifier

Learning
Algorithm

Labelling
Informatio

Fig. 2 General framework of feature selection

Fig. 3 Summary of feature selection approaches

3 Grey Wolf Optimization (GWO)

The main inspiration and the simple mathematical model of GWO algorithm are
clarified in this section.

3.1 GWO Inspiration

As mentioned in the introduction part, GWO is a recent technique in the family of
swarm intelligence. The GWO is encouraged by the guidance and hunting behavior
of the grey wolf packs. There is a mutual social hierarchy in each group of grey
wolves that identifies the dominance and power. Themost influential wolf in hunting,
feeding and migration is alpha, which guides the whole group. The second strongest

A Review of Grey Wolf Optimizer-Based Feature … 277

wolf is beta which will be in the lead if alpha is dead or sick. Omega and delta
are less influential than alpha and beta. This type of social intelligence is the GWO
algorithm’s main inspiration.

3.2 GWO’s Mathematical Model

Basically, the mathematical model of GWO is consisting of: encircling, hunting and
attacking the prey and have been outlined as following:

3.2.1 Encircling the Prey

In mathematics, the encircling behavior of the grey wolf can be expressed as:

�X(t + 1) = �X p(t) + �A. �D (1)

where �X is the vector’s position of the grey wolf, �X p is the vector’s position of the
prey, (t) is iterations number, and �A is a vector of coefficient. Whereas �D can be
expressed as follows:

�D =
∣
∣
∣ �C · �X p(t) − X̄(t)

∣
∣
∣ (2)

�C is a vector of coefficient, both coefficient vectors �A, �C can be mathematically
expressed as follows:

�A = 2−→a · −→r1 − −→a (3)

�C = 2 · −→r2 (4)

where−→r1 and−→r2 are vectors randomly in a range of [0, 1]. Whereas−→a is a set vector
reduces linearly over iterations from 2 to 0.

3.2.2 Hunting the Prey

The grey wolf’s hunting behavior is mathematically expressed, α is considered to be
the finest applicant for the solution, and β and δ are expected to havemore knowledge
about the prey’s possible positions. Therefore, the three finest solutions gained so far
are kept and force ω wolf to modify their position based on the finest position in the
decision space. This hunting behavior can be expressed as the following calculation:

278 Q. Al-Tashi et al.

−→
Dα =

∣
∣
∣
−→
C1 · −→

X α − −→
X

∣
∣
∣,

−→
Dβ =

∣
∣
∣
−→
C2 · −→

X β − −→
X

∣
∣
∣,

−→
Dδ =

∣
∣
∣
−→
C3 · −→

X δ − −→
X

∣
∣
∣ (5)

−→
X1 = −→

Xα − A1 ·
(−→
Dα

)

,
−→
X2 = −→

Xβ − A2.
(−→
Dβ

)

,
−→
X3 = −→

Xδ − A3.
(−→
Dδ

)

(6)

−→
X (t + 1) =

−−−−−−−−−→
X1 + X2 + X3

3
(7)

3.2.3 Attaching the Prey

Attacking the prey by grey wolfs is expressed based on a vector −→a where it is a
randomly vector whose value is within the range [−a,a], the value of −→a is reduced
linearly from 2 to 0 over iterations and can be expressed as the following:

−→a = 2 − t · 2

max
i

ter
(8)

where max
i

ter is the total number of iterations for the optimization and t is the

iteration number.

4 Grey Wolf Feature Selection Mechanism

The main step in solving GWO’s selection of features is to demonstrate the subset of
features in the representation of the solution. Figure 4 illustrates the representation
of the solution. The solution’s length is denoted by d, where d represents an integer
of the feature. The position of the solution can take a value of “1” or “0.” If the value
of the bit is equal to 0, feature not selected; whereas if the value of the bit is equal

1 0 1 1 0 1 0 1 1 0 1

1 1 1 1 1 1 0 0 0 0

Feature Selected Feature not Selected

Fig. 4 Representation of solution in feature selection

A Review of Grey Wolf Optimizer-Based Feature … 279

to 1, feature is selected. Consequently, a value of 1’s specifies the size of the subset
feature.

GWO is therefore only appropriate for continuous search problems, and agents
in GWO can move continuously in the search space because they have continuous
real-domain position vectors. Thus, it is impossible to use the algorithms described
in Sect. 3 to solve feature selection problems without amendment. There should be
an operator to convert the original GWO into its binary version to suit the problem
of feature selection. There were a numerous of binary operators which have been
suggested in the literature such as: sigmoid() [12], crossover() [13], and/or tanh()
[14] functions. Here is an example of how to covert GWO into BGWO, the wolf’s
update mechanism is a function of three vector positions, named x1, x2; x3 pushes
each wolf forward to the three finest solutions. To make the agent work in binary
space, you can modify the location update (5) to the following equation [12]:

xt+1
d =

{

1 if sigmoid
(x1+x2+x3

3

) ≥ rand
0 otherwise

(9)

where xt+1
d is an updated binary position in dimension d at iteration t, whereas rand

is a number randomly derived from a distribution uniform ∈ [1, 0], and sigmoid (a)
is indicated as follows [12]:

sigmoid(a) = 1

1 + e−10(x−0.5)
(10)

x1, x2, x3 in (6) are modified and modeled using the below equations [12]:

xd1 =
{

1 if
(

xdα + bstepdα
) ≥ 1

0 otherwise

xd2 =
{

1 if
(

xdβ + bstepdβ

)

≥ 1

0 otherwise

xd3 =
{

1 if
(

xdδ + bstepdδ
) ≥ 1

0 otherwise
(11)

where xdα,β,δ is the wolf’s alpha, beta and delta position’s vector in dimension d,
whereas bstepdα,β,δ is a step of binary in dimension d, that can be expressed as
follows [12]:

bstepdα,β,δ =
{
1 if cstepdα,β,δ ≥ rand
0 otherwise

(12)

where cstepdα,β,δ is a continuous value of d’s and can be expressed as in (13) [12], and
d specifies dimension, whereas rand a value randomly derived from a distribution
uniform ∈ [1, 0]:

280 Q. Al-Tashi et al.

cstepdα,β,δ = 1

1 + e−10(Ad
1D

d
α,β,δ−0.5)

(13)

5 Feature Selection Methods Based GWO

As can be seen from the literature, the GWO algorithm has been utilized in many
fields as a feature selection technique including the following fields: facial emotion
recognition, EMG signal classification, disease diagnosis, gene selection and intru-
sion detection systems. In current year 2019, several studies have been working with
GWO as a feature selection technique. For instance, in [15], Abd AL-Bast et al.
present an effective face recognition system, they used GWO for feature selection,
and k-NN for classification, they have evaluated their proposed method using Yale
face database. They compared the performance of their methodwith the performance
of other face recognition system. Their obtained results were better in terms of both
accuracy and run time. In the same year, Al-Tashi et al. [12] proposed a binary hybrid
GWOwith PSO for feature selection and for classification they used k-NN classifier.
They have evaluated their proposed method using 18 standard benchmark datasets
collected from UCI repository. They have compared their method with four well-
known approaches such as PSO, GWO, GA and hybrid WOSA-2. Their obtained
result was better in term of classification accuracy, number of selected feature as
well as computational time. Another work by [16], where a multi-strategy ensemble
GWOwas proposed. They integrated three updated search approaches to modify the
solutions by first enhancing global best to expand local search capability of GWO,
second adjustable approach by inserts a dimension of one vector into theGWOframe-
work and finally the disperse foraging strategy based on parameter self-adjustment.
They applied a numerous function of CEC2014 for experiments. They compared
their attained outcomes with three other improved GWO as well as to other related
work algorithms. Additionally, feature selection is applied to examine the efficiency
of MEGWO. Their experimental outcomes demonstrated that the proposed method
showed better performance in terms of convergence speed and accuracy. In [17],
the authors proposed a diagnostic method that combines gas chromatography mass
and machine learning (GC–MS), they used chaos enhanced grey wolf optimization
(EGWO) to find the best subset feature to enhance the identification accuracy. For
classification, they employed the extreme learning machine (ELM). They compared
their method with six other methods. Their obtained outcomes had better perfor-
mance in diagnosing patients with PQ poisoned. Another work in the same year
was made by [18], the authors proposed a modified GWO (MGWO) which acts as
a search strategy for feature selection. For classification, they used random forest,
k-nearest neighbor classifier and decision tree. They evaluated their approach using
several types of datasets of voice, speech and handwriting. Their obtained outcomes
show that the proposedmethod can reduce the features number and increase the accu-
racy. Another work in the same direction made by Alzubi et al. [19], they proposed

A Review of Grey Wolf Optimizer-Based Feature … 281

a modified MBGWO for intrusion detection system, SVM is used. They employed
NSL-KDD dataset to assess their proposed method. They compared their method
with state-of-the-art methods such as BGWO, AdaBoost and PSO-discretize-HNB.
Their method obtained a competitive result.

In 2018, much research studies have been conducted again using GWO as a fea-
ture selection technique. For example, in [20], the author proposed facial emotion
recognition system. Their usedGWOchooses the best features.AGWO-based neural
network (NN) is then used to classify emotions from selected features. They com-
pared the proposedmethodwith conventionalmethods such asNN-LMandNN-PSO.
The results they achieved are superior to traditional methods in terms of accuracy.
Another work in the same year, Al-Tashi et al. [21], proposed a wrapper feature
selection where GWO used as feature selection and SVM as a classifier for coro-
nary artery diseases classification. They evaluated their method on Cleveland heart
dataset and compared their proposed method with other competitive methods such
as ABC, GA algorithms. Their obtained results outperformed the other approaches
in term of classification accuracy, specificity and sensitivity. In the same direction,
another study proposed by Jingwei et al. [22], the authors proposed a competitive
BGWO (CBGWO) for EMG signals classification to handle the problem of feature
selection. They compared their method with some competitive methods from the
literature. Their obtained outcomes demonstrated the superiority of their method in
both classification performance and feature reduction.

Moreover, in 2017 also much research works have been conducted using GWO as
a feature selection. Anita and Satish [14] proposed two different wrapper approaches
aiming to select finest feature to enhance cervix lesions classification. First, scalar-
ized approach MOGWO, whereas the second is a nondominated sorting NSGWO.
For evaluation, they used CT-Scan images of 62 patients. Their methods were com-
pared with MOGA and firefly algorithm (MOFA). Their obtained results demon-
strated better performance compared to other competitive methods. Also, they have
conducted another experiment on microarray gene datasets. Their obtained results
demonstrated better performance than other methods. In [23], the authors proposed
a wrapper feature selection for medical diagnosis. They proposed an improved grey
wolf optimization (IGWO) to find the finest feature for medical data. At the begin-
ning, GA was utilized to produce the positions then GWO was used, then kernel
extreme learning machine has been used for classification. They compared their
approach against two disease datasets with two other competitive methods GA and
GWO. Their obtained results outperformed the other two GA and GWO. Another
study by [24], the authors proposed a wrapper feature selection for Parkinson’s dis-
ease classification. They used GWO for feature selection and k-NN, SVM and naïve
Bayes classifiers for classification. They have compared their proposed method with
four state-of-the-art methods which are: PSO, GA, binary bat algorithm (BBA) and
modified cuckoo search algorithm (MCS). They used speech dataset for evaluation.
Their obtained results outperformed the other methods in terms of accuracy and
number of features selected.

The following research studies have been mentioned in the review studied by
Faris et al. [25]. In 2015, a wrapper feature selection approach has been introduced

282 Q. Al-Tashi et al.

by Emary et al. [26]. They have proposed a binary BGWO to select the subset of
features and k-NN classifier as a fitness function to assess the selected features sub-
sets. 8 benchmark datasets collected from UCI repository are used for evaluating
their method. They compared their method with PSO and GA. Their attained out-
comes outperformed the other methods in term of accuracy and reduced number of
features. In 2016, the same authors Emary et al. [13] have extended their work and
proposed two wrapper feature selection methods based binary GWO using sigmoid
and crossover binary operators. Utilizing the same k-NN classifier. They used 18
datasets to evaluate their proposed method. Also, they compared their approaches
with PSO and GA. The attained results assure their earlier outcomes. The same
authors again in 2015 [27] have introduced multi-objective MOGWO for attribute
reduction. Firstly, GWO used filter-based mutual information to find a set of opti-
mal features. Secondly, GWO wrapper method was employed using k-NN classifier
performance to improve the gained solutions for better classification accuracy. They
compared their method against PSO, GA and another single objective method. Their
obtained results outperformed other methods by achieving much robustness and sta-
bility. Furthermore, in 2015 Vosooghifard et al. [28] utilized the BGWO wrapper
method on gene expression data for the classification of cancer. They used a decision
tree C4.5 as a classifier with cross-validation. Their method incorporated the clas-
sification accuracy only. They used 10 microarray cancer datasets for evaluations
and compared their method with different classifiers including SVM, multilayer per-
ceptron (MLP) and self-organizing map (SOM). In 2016, Yamany et al. [29] have
proposed a filter-based feature reduction method. They utilized GWO to select the
optimal features and rough set fitness function for classification. They used 11 UCI
data for evaluations and compared their proposed method with a GA and other rough
set reduction methods. Their method obtained a competitive result. Also in 2016,
Medjahed et al. [30] proposed a slightly modified GWO for band selection problem.
They used three benchmark hyperspectral datasets for experiment namely: PaviaUni-
versity, Indian Pine andSalinas. They compared theirmethodwith the state-of-the-art
methods such as: mRmR, cmim, Relief, GA, PSO, GSA and BBA. Their obtained
results can efficiently examine the spectral band selection and offer a high accu-
racy rate. Furthermore, in [31], they have used GWO to search the feature space to
find optimal feature subset that improves classification accuracy. Firstly, GWO used
filter-based based mutual information. Secondly, wrapper method utilized for guid-
ing classifier performance. The proposed method measured and compared against
several other metaheuristic algorithms with the help of NSL-KDD dataset. Table
1 illustrates the summary of GWO-based feature selection state-of-the-art methods
from 2015 to 2019.

In summary, as can be noticed from Table 1 there has been less studies
on filter comparing to wrapper method, and this is due to the fact that filters
disregard the goodness of the subset of features on the algorithm of classification;
however, wrappers assess the classification performance-based subsets of feature,
and this usually leads to better wrapper than filters in classification performance [3,
10, 11]. In addition, wrapper methods are claimed to be less effective than filters
methods, nonetheless experimentations have proved that is not true in most cases

A Review of Grey Wolf Optimizer-Based Feature … 283

Table 1 Summary of GWO-based feature selection

No Author Algorithm Application FS method Classifier

1 [15] GWO Yale face
database

Wrapper k-NN

2 [12] BGWOPSO UCI benchmark
datasets

Wrapper k-NN

3 [16] MEGWO UCI benchmark
datasets

Wrapper k-NN

4 [17] EGWO PQ-poisoned
patients

Wrapper ELM

5 [18] MGWO Voice,
handwriting
(spiral and
meander) and
speech datasets

Wrapper Random forest,
k-NN & decision
tree

6 [19] MBGWO Intrusion
detection
NSL-KDD
dataset

Wrapper SVM

7 [20] GWO Facial emotion
recognition

Wrapper GWO-Neural
network (NN)

8 [21] GWO Disease diagnosis Wrapper SVM

9 [22] CBGWO EMG signals
classification

Wrapper k-NN

10 [14] MOGWO
NSGWO

Cervix lesion
dataset (cancer
diagnosis) +
microarray gene
datasets

Wrapper SVM

11 [23] IGWO Medical
diagnosis

Wrapper KELM

12 [24] GWO Parkinson’s
diagnosis

Wrapper k-NN, SVM &
Naïve Bayes

13 [26] BGWO UCI benchmark
datasets

Wrapper k-NN

14 [13] bGWO1
bGWO2

UCI benchmark
datasets

Wrapper k-NN

15 [27] MOGWO UCI benchmark
datasets

Filter Wrapper MI k-NN

16 [28] BGWO Microarray
cancer datasets

Wrapper C4.5 decision tree

(continued)

284 Q. Al-Tashi et al.

Table 1 (continued)

No Author Algorithm Application FS method Classifier

17 [29] GWO UCI benchmark
datasets

Filter Rough set

18 [30] Slightly modified
GWO

Benchmark
hyperspectral
datasets

Wrapper k-NN

19 [31] GWO intrusion
detection
NSL-KDD
dataset

Filter Wrapper MI
k-NN

[32]. For instance, the rough set theory [29] which is filter method, it takes more
time than a wrapper approach. Despite the existence of rapid filter methods, for
instance, mutual information [27, 31], the performance of classification is generally
worse comparing to the majority of wrapper methods.

The GWO, as mentioned above, has been extensively used to solve problems
with selection of features. The main explanations for the algorithm’s success are
the simplicity of inspiration, few control parameters and the behavior of adaptive
exploration. However, like other metaheuristic algorithms, it has some drawbacks
and unavoidable disadvantages as follows: A binary operator should be equipped
with GWO in order to solve binary problems (feature selection). In addition, when
solving a large number of variables and local solution problems, fast convergence and
the use of accelerated resulted to local solutions. Mechanisms should be designed to
reduce convergence and utilization when GWO is trapped in a local optimum.

6 Conclusion and Possible Research Directions

This paper presented a comprehensive review of feature selection-based GWO algo-
rithm. The feature selection and its approaches were explained. Then, the GWO
inspiration and its mathematical model were mentioned. The mechanism of feature
selection-based GWO was discussed. The performance of state-of-the-art of feature
selection-based GWO was criticized and reviewed. Table 1 illustrated the summary
of GWO-based feature selection state-of-the-art methods.

Despite GWO’s superior performance in solving feature selection issues, this
review suggested some possible directions for research work such as: It is recom-
mended to investigate the use of angle modulated function or other binary operators
with GWO to solve feature selection issues. Another possible direction of research is
to hybridized filter and wrapper approach and used it with GWO. Moreover, feature

A Review of Grey Wolf Optimizer-Based Feature … 285

selection is a multi-objective problem aims to reduce both number of feature and
classification error rate, and based on the literature, the multi-objective GWO has
not fully investigated in such problem. Therefore, it is recommended to propose a
new or modify the current multi-objective GWO for feature selection purpose.

References

1. Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier
2. Kotu V, Deshpande B (2014) Predictive analytics and data mining: concepts and practice with

rapidminer. Morgan Kaufmann
3. Dash M, Liu H (1997) Feature selection for classification. Intell Data Anal 1(3):131–156
4. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn

Res 3:1157–1182
5. XueB, ZhangM,BrowneWN,YaoX (2016)A survey on evolutionary computation approaches

to feature selection. IEEE Trans Evol Comput 20(4):606–626
6. Binitha S, Sathya SS et al (2012) A survey of bio inspired optimization algorithms. Int J Soft

Comput Eng 2(2):137–151
7. Mirjalili S et al (2014) “Grey Wolf Optimizer 1 1”, vol 69, pp 46–61
8. Al-Tashi Q, RaisH,Abdulkadir SJ (2018)Hybrid swarm intelligence algorithmswith ensemble

machine learning for medical diagnosis. In: 2018 4th International Conference on Computer
and Information Sciences (ICCOINS), pp 1–6

9. Tang J, Alelyani S, Liu H (2014) Feature selection for classification: a review. Data Classif
Algorithms Appl, 37

10. Liu H, Zhao Z (2009) Manipulating data and dimension reduction methods: feature selection.
In: Encyclopedia of complexity and systems science. Springer, Heidelberg, pp 5348–5359

11. Liu H, Motoda H, Setiono R, Zhao Z (2010) Feature selection: an ever evolving frontier in data
mining. In: Feature selection in data mining, pp 4–13

12. Al-Tashi Q, Kadir SJA, Rais HM, Mirjalili S, Alhussian H (2019) Binary optimization using
hybrid Grey Wolf Optimization for feature selection. IEEE Access 7:39496–39508

13. Emary E, Zawbaa HM, Hassanien AE (2016) Binary Grey Wolf Optimization approaches for
feature selection. Neurocomputing 172:371–381

14. Sahoo A, Chandra S (2017) Multi-objective Grey Wolf Optimizer for improved cervix lesion
classification. Appl Soft Comput J 52:64–80

15. Abd AL, El-Hafeez T, Zaki AM (2018) Face recognition based on GreyWolf Optimization for
feature selection. In: International conference on advanced intelligent systems and informatics,
pp 273–283

16. Tu Q, Chen X, Liu X (2019) Multi-strategy ensemble Grey Wolf Optimizer and its application
to feature selection. Appl Soft Comput 76:16–30

17. Zhao X et al (2019) Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of
paraquat-poisoned patients. Comput Biol Chem 78:481–490

18. Sharma P, SundaramS, SharmaM, SharmaA,GuptaD (2019)Diagnosis of Parkinson’s disease
using modified grey wolf optimization. Cogn Syst Res 54:100–115

19. Alzubi QM, Anbar M, Alqattan ZNM, Al-Betar MA, Abdullah R. Intrusion detection system
based on a modified binary Grey Wolf Optimisation. Neural Comput Appl, 1–13

20. Sreedharan NPN, Ganesan B, Raveendran R, Sarala P, Dennis B et al (2018) Grey Wolf
optimisation-based feature selection and classification for facial emotion recognition. IET Bio-
metrics 7(5):490–499

21. Al-Tashi Q, Rais H, Jadid S (2018) Feature selection method based on GreyWolf Optimization
for coronary artery disease classification. In: International conference of reliable information
and communication technology, pp 257–266

286 Q. Al-Tashi et al.

22. Too J, Abdullah A, Mohd Saad N, Mohd Ali N, Tee W (2018) A new competitive binary
Grey Wolf Optimizer to solve the feature selection problem in EMG signals classification.
Computers 7(4):58

23. Li Q et al (2017) An enhanced grey wolf optimization based feature selection wrapped kernel
extreme learning machine for medical diagnosis. Comput Math Methods Med

24. Rajalaxmi RR, Kaavya S (2017) Feature selection for identifying Parkinson’s disease using
binary Grey Wolf Optimization,. In: Proceedings of the International Conference on Intelli-
gent Computing Systems (ICICS 2017–Dec 15th–16th 2017) organized by Sona College of
Technology, Salem, Tamilnadu, India

25. Faris H, Aljarah I, Al-Betar MA, Mirjalili S (2018) Grey Wolf Optimizer: a review of recent
variants and applications. Neural Comput Appl, 1–23

26. Emary E, Zawbaa HM, Grosan C, Hassenian AE (2015) Feature subset selection approach by
Gray-Wolf Optimization. In: Afro-European conference for industrial advancement, pp 1–13

27. Emary E, Yamany W, Ella A, Snasel V (2015) Multi-objective Gray-Wolf Optimization for
attribute reduction. Proc Proc Comput Sci 65:623–632

28. Vosooghifard M, Ebrahimpour H (2015) Applying Grey Wolf Optimizer-based decision tree
classifer for cancer classification on gene expression data. In: 2015 5th InternationalConference
on Computer and Knowledge Engineering (ICCKE), pp 147–151

29. YamanyW, Emary E, Hassenien AE (2016) New rough set attribute reduction algorithm based
on Grey Wolf Optimization. In: The 1st international conference on Advanced Intelligent
System and Informatics (AISI2015), 28–30 Nov 2015, Beni Suef, Egypt, pp 241–251

30. Medjahed SA, Saadi TA, Benyettou A, Ouali M (2016) Gray wolf optimizer for hyperspectral
band selection. Appl Soft Comput 40:178–186

31. Devi EM, Suganthe RC (2017) Feature selection in intrusion detection grey wolf optimizer.
Asian J Res Soc Sci Humanit 7(3):671–682

32. Xue B (2014) Particle swarm optimisation for feature selection in classification, vol 18, pp
261–276

	Preface
	Contents
	About the Editors
	Introduction to Evolutionary Machine Learning Techniques
	1 Introduction
	2 Search Methods in AI
	3 Machine Learning
	3.1 Supervise Learning
	3.2 Unsupervised Learning
	3.3 Reinforcement Learning

	4 Evolutionary Machine Learning
	5 Structure of the Book
	References

	Classification and Predication
	Salp Chain-Based Optimization of Support Vector Machines and Feature Weighting for Medical Diagnostic Information Systems
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Support Vector Machines (SVMs)
	3.2 Salp Swarm Algorithm

	4 Proposed SSA-SVM Model
	4.1 Individual Representation
	4.2 Fitness Evaluation
	4.3 System Architecture

	5 Experiment and Results
	5.1 Experimental Setup
	5.2 Results and Observations

	6 Conclusion and Future Directions
	References

	Support Vector Machine: Applications and Improvements Using Evolutionary Algorithms
	1 Introduction
	2 Support Vector Machine
	2.1 Applications of SVM
	2.2 How Does SVM Work?
	2.3 Interpretation of Inner Product

	3 Method's Description
	3.1 Gray Wolf Optimizer

	4 Experimental Results
	5 Conclusion and Remarks
	References

	Efficient Moth-Flame-Based Neuroevolution Models
	1 Introduction
	2 Structure of MFO
	3 Foundation of MLP
	4 Structure of MFO-embedded MLPs
	5 Results and Discussions
	6 Conclusions and Future Directions
	References

	Autonomous Robot Navigation Using Moth-Flame-Based Neuroevolution
	1 Introduction
	2 Materials and Methods
	2.1 Feedforward Neural Networks
	2.2 MFO Algorithm
	2.3 MFO for Training MLPs
	2.4 Dataset

	3 Experimental Setup
	4 Experimental Results
	4.1 Comparison with Other Well-Regarded Evolutionary Optimizers
	4.2 Comparison with Gradient-Based Algorithms

	5 Discussion of Results
	6 Conclusion and Future Directions
	References

	Link Prediction Using Evolutionary Neural Network Models
	1 Introduction
	2 Literature Review
	3 Preliminaries
	3.1 Multilayer Perceptron Networks (MLP)
	3.2 Evolutionary and Swarm-Based Optimizers

	4 Methodology
	4.1 Data Collection and Preparation
	4.2 Model Development
	4.3 Model Evaluation

	5 Experimental Results and Discussions
	5.1 Experiments Environment and Setup
	5.2 Comparison of Evolutionary Neural Networks with Traditional Classifiers
	5.3 Results based on the Comparison Between All Model Development Approaches
	5.4 Comparison with Traditional Link Prediction Methods

	6 Conclusions and Future Directions
	References

	Evolving Genetic Programming Models for Predicting Quantities of Adhesive Wear in Low and Medium Carbon Steel
	1 Introduction
	2 Pin-on-Disc Module Description
	3 Symbolic Regression via Genetic Programming
	4 Evolutionary Cycle of Genetic Programming
	5 Model Evaluation
	6 Experiments and Results
	6.1 Experiments Preparation and Data Collection
	6.2 GP Wear Model Development

	7 Conclusion
	References

	Feature Selection
	EvoloPy-FS: An Open-Source Nature-Inspired Optimization Framework in Python for Feature Selection
	1 Introduction
	2 Related Works
	3 Why Python
	4 EvoloPy Versions
	5 Framework Overview
	5.1 The Optimizer
	5.2 SIs Algorithms
	5.3 Fitness Functions
	5.4 Transfer Functions (TFs)
	5.5 Result Component

	6 Design Issues
	7 Experiments and Discussion
	8 Conclusion and Future Works
	References

	Multi-objective Particle Swarm Optimization: Theory, Literature Review, and Application in Feature Selection for Medical Diagnosis
	1 Introduction
	2 Literature Review
	3 Multi-objective Optimization
	4 Multi-objective Evolutionary Optimization
	4.1 Multi-objective Particle Swarm Optimization (MOPSO)
	4.2 Binary MOPSO

	5 Application of MOPSO in Feature Selection for Medical Diagnosis
	5.1 Problem Formulation
	5.2 Datasets' Description

	6 Experiments and Results
	6.1 Experimental Setup
	6.2 Evaluation Measures
	6.3 Results

	7 Concluding Remarks
	References

	Multi-objective Particle Swarm Optimization for Botnet Detection in Internet of Things
	1 Introduction and Related Works
	2 Internet of Things Botnets
	3 Botnet Detection Model Based on MOPSO
	3.1 Multi-objective Particle Swarm Optimization
	3.2 Binary MOPSO
	3.3 Fitness Formulation
	3.4 Experimental Setup
	3.5 Dataset Description

	4 Experimental Results and Discussion
	4.1 Evaluation Measures
	4.2 Results and Discussions

	5 Conclusion and Future Work
	References

	Evolutionary and Swarm-Based Feature Selection for Imbalanced Data Classification
	1 Introduction
	2 Preliminaries
	2.1 Evolutionary Search
	2.2 Particle Swarm Optimization

	3 Framework
	3.1 Metaheuristic Search
	3.2 Internal Evaluation (Fitness Functions)
	3.3 Induction Algorithm (The Classifier)
	3.4 External Evaluation
	3.5 Relevance of Input Features

	4 Experiments and Results
	4.1 Setup of Experiments
	4.2 Description of Datasets
	4.3 Results and Discussion

	5 Conclusion
	References

	Binary Harris Hawks Optimizer for High-Dimensional, Low Sample Size Feature Selection
	1 Introduction
	2 Feature Selection
	3 Harris Hawks Optimization (HHO)
	3.1 Exploration Phase
	3.2 Shifting from Exploration to Exploitation
	3.3 Exploitation Phase
	3.4 Pseudocode of HHO

	4 Proposed Binary HHO
	5 BHHO-Based Feature Selection
	6 Results and Discussion
	6.1 Sensitivity Analysis
	6.2 Comparison Between BHHO with S-Shaped and V-Shaped TFs
	6.3 Comparison with Other Algorithms

	7 Conclusions and Future Directions
	References

	A Review of Grey Wolf Optimizer-Based Feature Selection Methods for Classification
	1 Introduction
	2 Feature Selection
	3 Grey Wolf Optimization (GWO)
	3.1 GWO Inspiration
	3.2 GWO’s Mathematical Model

	4 Grey Wolf Feature Selection Mechanism
	5 Feature Selection Methods Based GWO
	6 Conclusion and Possible Research Directions
	References

